Nav: Home

Patterns in DNA reveal hundreds of unknown protein pairings

July 11, 2019

Sequencing a genome is getting cheaper, but making sense of the resulting data remains hard. Researchers have now found a new way to extract useful information out of sequenced DNA.

By cataloging subtle evolutionary signatures shared between pairs of genes in bacteria, the team was able to discover hundreds of previously unknown protein interactions. This method is now being applied to the human genome, and could produce new insights into how human proteins interact.

The project is a collaboration between scientists at the University of Washington School of Medicine and Harvard University. Their report appears in the July 11 issue of Science.

"Protein-protein interactions are fundamental to biological function. It's remarkable that they can now be predicted en masse using the large amounts of genomic sequence data that have been generated in recent years," said senior author David Baker, professor of biochemistry at the University of Washington School of Medicine.

Cells are packed with proteins, many of which must physically interact in order to function. This can mean coming together to copy DNA or to form long fibers like those found in muscle. In many cases, however, scientists still do not know which proteins interact. Discovering new pairings can be slow, laborious, and costly.

Looking for a better way, a team of four computational biologists studied a phenomenon called co-evolution, wherein changes in one gene are associated with changes in another. This can indicate that two genes are linked in some important way.

For example, if one gene mutates to produce a protein with an altered shape, a second may evolve to produce a protein with a shape complementary to the first, thereby preserving the ability of the two proteins to interact.

In recent years, researchers have found evidence for some of these subtle molecular interactions in an organism's DNA.

"Co-evolution has been useful for understanding how specific proteins interact, but we can now use it as a tool for discovery," said lead author Qian Cong, a postdoctoral fellow at the UW School of Medicine.

The research team compared more than 4,000 genes from E. coli to DNA sequences from more than 40,000 other bacterial genomes. This large stockpile of genetic information allowed the researchers to use a bespoke statistical model to assess co-evolution between each E. coli gene.

After several rounds of analysis, 1,618 pairs were found to have the strongest evidence of co-evolution. By comparing their results to a small set of already characterized protein-protein interactions, the researchers achieved considerably higher accuracy than previous experimental screening methods.

Among the newly discovered interactions were a few that hint at new biological insights. One of these, an interaction between a protein toxin and its antitoxin, may help explain, the researchers speculate, why some E. coli dominate their microbial niche. Another newfound pairing suggests that a protein called PstB, which was known to play a role in metabolism, may also help coordinate protein synthesis and mineral transport.

"It is rare in biology for a software tool to make predictions that are promising enough to test, but that is exactly what's happening here," said Cong. There are literally hundreds of follow-up experiments that could be performed in labs around the world."

The team also scoured the genome of Mycobacterium tuberculosis, a disease bacterium distantly related to E. coli. They identified 911 protein-protein interactions with high confidence. 95 percent of these had never been previously described. Seventy involve proteins that may contribute to the virulence of M. tuberculosis, the researchers report. These findings may open new routes to develop drugs against the deadly pathogen.

"We are going to apply this tool to more pathogens, and the human genome," says Cong. "Our success will depend on how much work other scientists put into annotating which parts of the genome are genes and which parts are something else."
-end-
Cong is a Washington Research Foundation Innovation Fellow. This research used resources of the National Energy Research Scientific Computing Center.

The authors declare no competing interests.

This news release was written by Ian Haydon of the Institute for Protein Design.

University of Washington Health Sciences/UW Medicine

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".