Nav: Home

Mathematical model explores daily rhythms in pain sensitivity

July 11, 2019

A new computational model successfully predicts how daily pain sensitivity rhythms affect pain processing, both in healthy adults and in people with neuropathic pain. Jennifer Crodelle of New York University and colleagues present these findings in PLOS Computational Biology.

Just as processes like metabolism and alertness exhibit a daily rhythm, pain sensitivity changes over the course of the day. Sensitivity is usually highest in the middle of the night and lowest in late afternoon. However, this rhythm is flipped for people with neuropathic pain, who feel severe pain in response to a typically non-painful stimulus. For these patients, the lowest pain sensitivity occurs at night.

The mechanisms underlying both normal and neuropathic pain rhythms have been unclear. To gain new insights, Crodelle and colleagues built a mathematical model that simulates how pain is transmitted from a nerve to the spinal cord's dorsal horn, where pain is initially processed.

The researchers found that their model successfully reproduces experimental results on pain sensitivity and predicts how these results are affected by time of day. For instance, it predicts the time-of-day effects on pain inhibition, the phenomenon in which one feels a lessening of pain from applying light pressure, such as by grabbing a stubbed toe.

The model also suggests a potential mechanism for the flipped sensitivity rhythm in people with neuropathic pain: a change from inhibition to excitation in the synaptic connections between nerve cells. This finding points to targets for further experimental study and potential treatment.

"Our modeling results provide a first step in understanding how the daily rhythm in pain sensitivity affects normal pain processing across the day and potentially how the daily rhythm can benefit pain management strategies in clinical settings," Crodelle says. "For example, pain relief medication could be titrated appropriately across the day, thus reducing the total amount of medication needed."

Potential next steps are to incorporate factors that may influence the daily pain sensitivity rhythm, such as sleep deprivation and jet lag. The model could also aid investigations into how pain sensitivity is reduced by a chronic pain treatment known as spinal cord stimulation.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007106

Citation: Crodelle J, Piltz SH, Hagenauer MH, Booth V (2019) Modeling the daily rhythm of human pain processing in the dorsal horn. PLoS Comput Biol 15(6): e1007106. https://doi.org/10.1371/journal.pcbi.1007106

Funding: The authors were funded by the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award DBI-1300426, with additional support from The University of Tennessee, Knoxville (JC, SHP, MHH, VB) http://www.nimbios.org. This work was also partially supported by the following sources: NSF Mathematical Sciences PostDoctoral Research Fellowship DMS-1703761 (JC), University of Michigan (SHP), NSF Award DMS-1412119 (VB), and the Pritzker Neuropsychiatric Disorders Research Consortium (MHH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Pain Articles:

It's not just a pain in the head -- facial pain can be a symptom of headaches too
A new study finds that up to 10% of people with headaches also have facial pain.
New opioid speeds up recovery without increasing pain sensitivity or risk of chronic pain
A new type of non-addictive opioid developed by researchers at Tulane University and the Southeast Louisiana Veterans Health Care System accelerates recovery time from pain compared to morphine without increasing pain sensitivity, according to a new study published in the Journal of Neuroinflammation.
The insular cortex processes pain and drives learning from pain
Neuroscientists at EPFL have discovered an area of the brain, the insular cortex, that processes painful experiences and thereby drives learning from aversive events.
Pain, pain go away: new tools improve students' experience of school-based vaccines
Researchers at the University of Toronto and The Hospital for Sick Children (SickKids) have teamed up with educators, public health practitioners and grade seven students in Ontario to develop and implement a new approach to delivering school-based vaccines that improves student experience.
Pain sensitization increases risk of persistent knee pain
Becoming more sensitive to pain, or pain sensitization, is an important risk factor for developing persistent knee pain in osteoarthritis (OA), according to a new study by researchers from the Université de Montréal (UdeM) School of Rehabilitation and Hôpital Maisonneuve Rosemont Research Centre (CRHMR) in collaboration with researchers at Boston University School of Medicine (BUSM).
More Pain News and Pain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...