Strange warping geometry helps to push scientific boundaries

July 11, 2019

Atomic interactions in everyday solids and liquids are so complex that some of these materials' properties continue to elude physicists' understanding. Solving the problems mathematically is beyond the capabilities of modern computers, so scientists at Princeton University have turned to an unusual branch of geometry instead.

Researchers led by Andrew Houck, a professor of electrical engineering, have built an electronic array on a microchip that simulates particle interactions in a hyperbolic plane, a geometric surface in which space curves away from itself at every point. A hyperbolic plane is difficult to envision -- the artist M.C. Escher used hyperbolic geometry in many of his mind-bending pieces -- but is perfect for answering questions about particle interactions and other challenging mathematical questions.

The research team used superconducting circuits to create a lattice that functions as a hyperbolic space. When the researchers introduce photons into the lattice, they can answer a wide range of difficult questions by observing the photons' interactions in simulated hyperbolic space.

"You can throw particles together, turn on a very controlled amount of interaction between them, and see the complexity emerge," said Houck, who was the senior author of the paper published July 4 in the journal Nature.

Alicia Kollár, a postdoctoral research associate at the Princeton Center for Complex Materials and the study's lead author, said the goal is to allow researchers to address complex questions about quantum interactions, which govern the behavior of atomic and subatomic particles.

"The problem is that if you want to study a very complicated quantum mechanical material, then that computer modeling is very difficult. We're trying to implement a model at the hardware level so that nature does the hard part of the computation for you," said Kollár.

The centimeter-sized chip is etched with a circuit of superconducting resonators that provide paths for microwave photons to move and interact. The resonators on the chip are arranged in a lattice pattern of heptagons, or seven-sided polygons. The structure exists on a flat plane, but simulates the unusual geometry of a hyperbolic plane.

"In normal 3-D space, a hyperbolic surface doesn't exist," said Houck. "This material allows us to start to think about mixing quantum mechanics and curved space in a lab setting."

Trying to force a three-dimensional sphere onto a two-dimensional plane reveals that space on a spherical plane is smaller than on a flat plane. This is why the shapes of countries appear stretched out when drawn on a flat map of the spherical Earth. In contrast, a hyperbolic plane would need to be compressed in order to fit onto a flat plane.

"It's a space that you can mathematically write down, but it's very difficult to visualize because it's too big to fit in our space," explained Kollár.

To simulate the effect of compressing hyperbolic space onto a flat surface, the researchers used a special type of resonator called a coplanar waveguide resonator. When microwave photons pass through this resonator, they behave in the same way whether their path is straight or meandering. The meandering structure of the resonators offers flexibility to "squish and scrunch" the sides of the heptagons to create a flat tiling pattern, said Kollár.

Looking at the chip's central heptagon is akin to looking through a fisheye camera lens, in which objects at the edge of the field of view appear smaller than in the center -- the heptagons look smaller the farther they are from the center. This arrangement allows microwave photons that move through the resonator circuit to behave like particles in a hyperbolic space.

The chip's ability to simulate curved space could enable new investigations in quantum mechanics, including properties of energy and matter in the warped space-time around black holes. The material could also be useful for understanding complex webs of relationships in mathematical graph theory and communication networks. Kollár noted that this research could eventually aid the design of new materials.

But first, Kollár and her colleagues will need to further develop the photonic material, both by continuing to examine its mathematical basis and by introducing elements that enable photons in the circuit to interact.

"By themselves, microwave photons don't interact with each other -- they pass right through," said Kollár. Most applications of the material would require "doing something to make it so that they can tell there's another photon there."
Kollár plans to continue this line of research as she begins a faculty position at the University of Maryland this summer. Mattias Fitzpatrick, who graduated with a Ph.D. in electrical engineering on June 4, co-authored the study along with Kollár and Houck. Fitzpatrick will begin a postdoctoral fellowship with Assistant Professor of Electrical Engineering Nathalie de Leon.

This research was supported by the National Science Foundation, including the Division of Materials Research and the Multidisciplinary University Research Initiatives program.

Princeton University, Engineering School

Related Quantum Mechanics Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

A new interpretation of quantum mechanics suggests reality does not depend on the measurer
For 100 years scientists have disagreed on how to interpret quantum mechanics.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Fluid mechanics mystery solved
An environmental engineering professor has solved a decades-old mystery regarding the behavior of fluids, a field of study with widespread medical, industrial and environmental applications.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

Read More: Quantum Mechanics News and Quantum Mechanics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to