Nav: Home

Strange warping geometry helps to push scientific boundaries

July 11, 2019

Atomic interactions in everyday solids and liquids are so complex that some of these materials' properties continue to elude physicists' understanding. Solving the problems mathematically is beyond the capabilities of modern computers, so scientists at Princeton University have turned to an unusual branch of geometry instead.

Researchers led by Andrew Houck, a professor of electrical engineering, have built an electronic array on a microchip that simulates particle interactions in a hyperbolic plane, a geometric surface in which space curves away from itself at every point. A hyperbolic plane is difficult to envision -- the artist M.C. Escher used hyperbolic geometry in many of his mind-bending pieces -- but is perfect for answering questions about particle interactions and other challenging mathematical questions.

The research team used superconducting circuits to create a lattice that functions as a hyperbolic space. When the researchers introduce photons into the lattice, they can answer a wide range of difficult questions by observing the photons' interactions in simulated hyperbolic space.

"You can throw particles together, turn on a very controlled amount of interaction between them, and see the complexity emerge," said Houck, who was the senior author of the paper published July 4 in the journal Nature.

Alicia Kollár, a postdoctoral research associate at the Princeton Center for Complex Materials and the study's lead author, said the goal is to allow researchers to address complex questions about quantum interactions, which govern the behavior of atomic and subatomic particles.

"The problem is that if you want to study a very complicated quantum mechanical material, then that computer modeling is very difficult. We're trying to implement a model at the hardware level so that nature does the hard part of the computation for you," said Kollár.

The centimeter-sized chip is etched with a circuit of superconducting resonators that provide paths for microwave photons to move and interact. The resonators on the chip are arranged in a lattice pattern of heptagons, or seven-sided polygons. The structure exists on a flat plane, but simulates the unusual geometry of a hyperbolic plane.

"In normal 3-D space, a hyperbolic surface doesn't exist," said Houck. "This material allows us to start to think about mixing quantum mechanics and curved space in a lab setting."

Trying to force a three-dimensional sphere onto a two-dimensional plane reveals that space on a spherical plane is smaller than on a flat plane. This is why the shapes of countries appear stretched out when drawn on a flat map of the spherical Earth. In contrast, a hyperbolic plane would need to be compressed in order to fit onto a flat plane.

"It's a space that you can mathematically write down, but it's very difficult to visualize because it's too big to fit in our space," explained Kollár.

To simulate the effect of compressing hyperbolic space onto a flat surface, the researchers used a special type of resonator called a coplanar waveguide resonator. When microwave photons pass through this resonator, they behave in the same way whether their path is straight or meandering. The meandering structure of the resonators offers flexibility to "squish and scrunch" the sides of the heptagons to create a flat tiling pattern, said Kollár.

Looking at the chip's central heptagon is akin to looking through a fisheye camera lens, in which objects at the edge of the field of view appear smaller than in the center -- the heptagons look smaller the farther they are from the center. This arrangement allows microwave photons that move through the resonator circuit to behave like particles in a hyperbolic space.

The chip's ability to simulate curved space could enable new investigations in quantum mechanics, including properties of energy and matter in the warped space-time around black holes. The material could also be useful for understanding complex webs of relationships in mathematical graph theory and communication networks. Kollár noted that this research could eventually aid the design of new materials.

But first, Kollár and her colleagues will need to further develop the photonic material, both by continuing to examine its mathematical basis and by introducing elements that enable photons in the circuit to interact.

"By themselves, microwave photons don't interact with each other -- they pass right through," said Kollár. Most applications of the material would require "doing something to make it so that they can tell there's another photon there."
-end-
Kollár plans to continue this line of research as she begins a faculty position at the University of Maryland this summer. Mattias Fitzpatrick, who graduated with a Ph.D. in electrical engineering on June 4, co-authored the study along with Kollár and Houck. Fitzpatrick will begin a postdoctoral fellowship with Assistant Professor of Electrical Engineering Nathalie de Leon.

This research was supported by the National Science Foundation, including the Division of Materials Research and the Multidisciplinary University Research Initiatives program.

Princeton University, Engineering School

Related Quantum Mechanics Articles:

Engineers examine chemo-mechanics of heart defect
Elastin and collagen serve as the body's building blocks. Any genetic mutation short-circuiting their function can have a devastating, and often lethal, health impact.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Quantum mechanics are complex enough, for now...
Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Problems in mechanics open the door to the orderly world of chaos
Despite the impression given in most mechanics texts, most non-trivial mechanics problems simply have no analytic solutions.
More Quantum Mechanics News and Quantum Mechanics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...