Altered expression of key developmental genes underlies evolution of butterfly wing patterns

July 12, 2004

The diverse and colorful wing patterns of butterflies and moths provide some of the most iconic examples of the evolutionary process. Researchers studying gene expression in a range of moth and butterfly species report this week that a certain class of wing patterns has likely evolved through seemingly simple alterations in the timing of various types of gene expression.

The class of wing patterns in question, so-called "intervein" patterns, have lines of symmetry halfway between the insect's wing veins and occur in a range of shapes, including eyespots, ellipses, and midlines. How these dramatic markings have evolved is not completely understood.

Previous work had implicated several genes in the formation of eyespot wing patterns, but little was known about how changes in the activity of these genes translated into the diversification of color patterns over evolutionary time. In their new study, Dr. Robert Reed of Duke University and Dr. Michael Serfas of the University of Wisconsin, Madison, show how the regulation of developmental patterning genes changed during the evolution of line and eyespot color patterns. Comparing eight species of moths and butterflies, the researchers found that signature alterations in the timing of expression of two well-studied genes, Notch and Distal-less, mark an early event in the development of eyespots and other intervein patterns in multiple species. By making a phylogenetic comparison of the species' characteristics, the authors were able to form new ideas about how these patterns evolved.

It is thought that morphological evolution frequently occurs through the relative acceleration or delay of development between different parts of an organism. This idea was first proposed around the time of Darwin, but finding a molecular basis for the phenomenon in nature has proven difficult. In their study, Reed and Serfas show that changes in a gene-regulation time sequence are associated with an evolutionary switch between line and spot color patterns. These findings demonstrate how dramatic evolutionary changes in discrete characteristics of an organism may occur through simple changes in the timing of gene regulation.
-end-
Robert D. Reed and Michael S. Serfas: "Butterfly Wing Pattern Evolution Is Associated with Changes in a Notch/Distal-less Temporal Pattern Formation Process"

Publishing in Current Biology, Volume 14, Number 13, July 13, 2004, pages 1159-1166.

Cell Press

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.