Controlling movement through thought alone

July 12, 2006

Providence, R.I. -- A man with paralysis of all four limbs could directly control objects around him - open simulated email, play a game of Pong, adjust the volume on the television set - using only his thoughts. These pilot clinical trial findings, featured on the cover of Nature, mark a major advance in neuroscience, one that offers hope to people with severe motor impairments.

The Nature article is the first to provide in-depth scientific findings from the pilot trial of a device called BrainGate, a brain-to-movement system created and tested by Cyberkinetics Neurotechnology Systems Inc. Cyberkinetics, the forerunner of Cyberkinetics Neurotechnology Systems Inc. was founded in 2001 under a licensing agreement with the Brown University Research Foundation. Brown faculty and students created the company based on research and technology developed in the laboratory of neuroscientist John Donoghue, the Henry Merritt Wriston Professor and director of the Brain Science Program.

BrainGate consists of a surgically implanted sensor that records the activity of dozens of brain cells simultaneously. The system also decodes these signals in real time to control a computer or other external devices. In the future, BrainGate could control wheelchairs or prosthetic limbs. The long-term goal: Pairing BrainGate with a muscle stimulator system - which would allow people with paralysis to move their limbs again.

In the Nature article, the authors describe the experience of the first trial patient, a 25-year-old man with spinal cord injury, as he used the device for nine months of the 12-month study period. The team also discusses the initial performance of a second trial patient, a 55-year-old man with spinal cord injury.

Based on the experience of these patients, the team outlines three key findings: "We found that cortical activity can be modulated voluntarily even years after spinal cord injury," said Leigh Hochberg, M.D., a Brown alumnus and lead author of the article. "Some researchers might have predicted that this part of the brain would alter its function dramatically after the spinal cord was injured. But that doesn't seem to be the case. The movement-related signals are still there.

"What's truly exciting is this: The cortical activity of a person with spinal cord injury, controlling a device simply by intending to move his own hand, is similar to the brain activity seen during preclinical studies of monkeys actually using their hands," Hochberg said. "Whether it is real or attempted movement, neurons seem to respond with similar firing patterns."

Hochberg is an investigator in neuroscience at Brown and a neurologist at Massachusetts General Hospital, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital. Hochberg is also an instructor at Harvard Medical School and an associate investigator with the Rehabilitation Research and Development Service at the Providence VA Medical Center.

Donoghue, senior author of the article and chief scientific officer at Cyberkinetics, noted that technical problems arose during the pilot trial, including signal decline after months of recording. However, the patients' control of the computer cursor and other devices was largely reliable. The first patient, for example, executed simple tasks such as moving a cursor to a target on a computer screen with 75 to 85 percent accuracy over many sessions. He also controlled a robotic arm, picking up pieces of hard candy and dropping them into a technician's hand.

"What is also encouraging is the immediate response from the brain," Donoghue said. "When asked to 'think right' or 'think left,' patients were able to change their neural activity immediately. And their use of the device is seemingly easy. Patients can control the computer cursor and carry on a conversation at the same time, just as we can simultaneously talk and use our computers."

BrainGate is based on more than a decade of basic neuroscience research in the Donoghue lab, much of it funded by the National Institute of Neurological Disorders and Stroke, and much of it conducted by students. After proving the concept for BrainGate in experiments with monkeys, Donoghue and three Brown colleagues created Cyberkinetics to take their idea from bench to clinical trial.
Two of those founders - Mijail Serruya, M.D., a Brown Medical School graduate, and Gerhard Friehs, M.D., a neurosurgery professor at Brown Medical School and director of functional neurosurgery at Rhode Island Hospital - are co-authors on the Nature article. Jon Mukand, M.D., clinical assistant professor of orthopaedics at Brown and principal investigator of one BrainGate trial site, also contributed. Maryam Saleh and Abraham Caplan, Cyberkinetics employees who worked directly with trial patients and are co-authors of the article, are Brown graduates.

At Brown, work on BrainGate continues through a collaboration with Cyberkinetics. Donoghue is working with Arto Nurmikko, professor of engineering, to develop a fully implantable, wireless microelectronic system to eliminate the need for external wires or bulky equipment. Michael Black, professor of computer science, is also working with the group to improve the neural decoding device so it can create control signals for complex motor tasks such as grasping.

Brown also has a collaborative research and licensing agreement with Cyberkinetics that allows eligible neuroscientists to access the company's clinical trial data to conduct basic research.

Cyberkinetics Neurotechnology Systems, Inc. is funding the pilot clinical trial.

Brown University

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to