Brain-computer link allows paralyzed patient to manipulate devices by thought

July 12, 2006

A patient with a spinal cord injury was able to produce brain signals associated with intending to move his paralyzed limbs, signals picked up by an implanted sensor and translated into electronic impulses that allowed him to control a computer cursor and manipulate mechanical devices. A report appearing in the July 13 issue of Nature includes the first published findings from an ongoing clinical trial of the BrainGate Neural Interface System, a brain-computer interface device in the early stages of clinical testing at Massachusetts General Hospital (MGH), Spaulding Rehabilitation Hospital and other institutions across the country.

"The broad question we are addressing is whether it's possible for someone with paralysis to use the activity of the motor cortex [the part of the brain responsible for motion] to control an external device," says Leigh Hochberg, MD, PhD, a neurologist at MGH, Spaulding and Brigham and Women's Hospital and lead author of the Nature paper. "There has been a question of how the function of the cortex might change after it was disconnected from the rest of the body by damage to the spinal cord. We're finding that, even years after spinal cord injury, the same signals that originally controlled a limb are available and can be utilized."

Manufactured by Cyberkinetics Neurotechnology Systems, Inc., of Foxborough, Mass., the BrainGate System consists of an internal sensor to detect brain cell activity and external processors that convert brain impulses into computerized signals. Two clinical trials are currently underway to evaluate the system's safety and feasibility for detecting and translating brain activity from patients with paralysis resulting from spinal cord injury, brain stem stroke or muscular dystrophy and patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). John Donoghue, PhD, a neuroscience professor and director of the Brain Science Program at Brown University and the senior author of the Nature paper, is a co-founder of Cyberkinetics.

The Nature report describes the first participant in these trials, a 25-year-old man who had sustained a spinal cord injury leading to paralysis in all four limbs three years prior to the study. Over a period of nine months, he took part in 57 sessions during which the implanted BrainGate sensor recorded activity in his motor cortex while he imagined moving his paralyzed limbs and then used that imagined motion for several computer-based tasks. Among his accomplishments - completed with little or no learning time - was moving a computer cursor to open simulated e-mail, draw circular shapes and play simple video games. He also was able to open and close a prosthetic hand and use a robotic limb to grasp and move objects.

"This system is giving us, for the first time, the ability to look at and listen to firing patterns of ensembles of individual neurons in the human brain for extended periods of time. We hope the knowledge gained from this work will allow the development of systems that provide improved communication and environmental control for people with paralysis and someday, when combined with neuromuscular stimulators, restore control over their limbs," says Hochberg, an instructor in Neurology at Harvard Medical School and an investigator in neuroscience at Brown. He and his co-authors also note that the system requires significant improvement in reliability and control and that further research is needed before it will be useful outside a research setting.
-end-
Co-authors of the Nature paper, along with Hochberg and Donoghue, are Mijail Serruya, MD, PhD, of Brown; Gerhard Friehs, MD, of Brown and Rhode Island Hospital; Jon Mukand, MD, PhD, Sargent Rehabilitation Center, Warwick, R.I.; Maryam Saleh, Abraham Caplan, and Almut Branner, PhD of Cyberkinetics; David Chen, MD, Rehabilitation Institute of Chicago; and Richard Penn, MD, University of Chicago. The clinical trials are being supported by Cyberkinetics Neurotechnology Systems, Inc.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, transplantation biology and photomedicine. MGH and Brigham and Women's Hospital are founding members of Partners HealthCare HealthCare System, a Boston-based integrated health care delivery system.

Massachusetts General Hospital

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.