Plant 'breathing' mechanism discovered

July 12, 2010

Palo Alto, CA--A tiny, little-understood plant pore has enormous implications for weather forecasting, climate change, agriculture, hydrology, and more. A study by scientists at the Carnegie Institution's Department of Global Ecology, with colleagues from the Research Center Jülich in Germany, has now overturned the conventional belief about how these important structures called stomata regulate water vapor loss from the leaf-a process called transpiration. They found that radiation is the driving force of physical processes deep within the leaf. The research is published the week of July 12, 2010, in the on-line early edition of the Proceedings of the National Academy of Sciences.

Stomata are lip-shaped pores surrounded by a pair of guard cells that control the size of the opening. The size of the pores regulates the inflow of carbon dioxide (CO2 ) needed for photosynthesis and the outflow of water vapor to the atmosphere--transpiration.

Transpiration cools and humidifies the atmosphere over vegetation, moderating the climate and increasing precipitation. Stomata influence the rate at which plants can absorb CO2 from the atmosphere, which affects the productivity of plants and the concentration of atmospheric CO2. Understanding stoma is important for climate change research.

Current climate change models use descriptions of stomatal response based on statistical analysis of studies conducted with a few plant species. This approach is not based on a solid understanding of the mechanism of stomatal regulation and provides a poor basis for extrapolating to environmental conditions.

"Scientists have been studying stomata for at least 300 years. It's amazing that we have not had good grasp about the regulatory mechanisms that control how much stomata open or close in response to a constantly changing environment," remarked co-author Joseph Berry of Carnegie.

For the first time, these researchers looked at how the exchange of energy and water vapor at the outer surface of the leaf are linked to processes inside the leaf. They found that the energy from radiation absorbed by pigments and water inside the leaf influences how the stomata control water levels.

"In this study we illuminated a sunflower leaf with an incandescent light that was filtered to include or exclude near infrared light (NIR >700 nm)," remarked Berry. "When the near infrared light was applied, the stomata responded by opening and indirectly stimulated photosynthesis. Light of different colors gave similar stomata opening at equal energy inputs--more evidence that heat is the driver."

The scientists replicated the experiment with five other plant species and over a range of carbon dioxide levels and temperatures. The researchers also developed a model based on energy balance of the leaf system to simulate responses. Results from the model mimicked the results from the lab.

It has been assumed that the guard cells forming the pore have sophisticated sensory and information processing systems making use of light and other environmental cues to adjust the pores. The breakthrough of this research is that it is the first to demonstrate that regulation of the rate of water loss by stomata is linked to physical processes that occur deep within the leaf.

"This means that the current model for what drives stomata to change their size has to change," remarked co-author Roland Pieruschka, a Marie Curie Fellow from the European Union at the Carnegie Institution (currently at the Research Center Jülich in Germany). "For a long time researchers have thought that heat from the sun, which is absorbed by pigments, moves from cell to cell until it gets to the cavities beneath the stomata where evaporation has been thought to take place. This probably happens to some degree, but the results presented here are more consistent with our hypothesis that much of this heat is transferred through air spaces inside the leaf that are saturated with water vapor. This key difference is pivotal for understanding how Otto Lange's seminal work in the 1970s, on responses of stomata to humidity, can be fit into a leaf-scale concept of stomatal regulation."
-end-
The Carnegie Institution for Science (carnegieScience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.