Origin of key cosmic explosions still a mystery

July 12, 2010

When a star explodes as a supernova, it shines so brightly that it can be seen from millions of light-years away. One particular supernova variety - Type Ia - brightens and dims so predictably that astronomers use them to measure the universe's expansion. The resulting discovery of dark energy and the accelerating universe rewrote our understanding of the cosmos. Yet the origin of these supernovae, which have proved so useful, remains unknown.

"The question of what causes a Type Ia supernova is one of the great unsolved mysteries in astronomy," says Rosanne Di Stefano of the Harvard-Smithsonian Center for Astrophysics (CfA).

Astronomers have very strong evidence that Type Ia supernovae come from exploding stellar remnants called white dwarfs. To detonate, the white dwarf must gain mass until it reaches a tipping point and can no longer support itself.

There are two leading scenarios for the intermediate step from stable white dwarf to supernova, both of which require a companion star. In the first possibility, a white dwarf swallows gas blowing from a neighboring giant star. In the second possibility, two white dwarfs collide and merge. To establish which option is correct (or at least more common), astronomers look for evidence of these binary systems.

Given the average rate of supernovae, scientists can estimate how many pre-supernova white dwarfs should exist in a galaxy. But the search for these progenitors has turned up mostly empty-handed.

To hunt for accreting white dwarfs, astronomers looked for X-rays of a particular energy, produced when gas hitting the star's surface undergoes nuclear fusion. A typical galaxy should contain hundreds of such "super-soft" X-ray sources. Instead we see only a handful. As a result, a recent paper suggested that the alternative, merger scenario was the source of Type Ia supernovae, at least in many galaxies.

That conclusion relies on the assumption that accreting white dwarfs will appear as super-soft X-ray sources when the incoming matter experiences nuclear fusion. Di Stefano and her colleagues have argued that the data do not support this hypothesis.

In a new paper, Di Stefano takes the work a step further. She points out that a merger-induced supernova would also be preceded by an epoch during which a white dwarf accretes matter that should undergo nuclear fusion. White dwarfs are produced when stars age, and different stars age at different rates. Any close double white-dwarf system will pass through a phase in which the first-formed white dwarf gains and burns matter from its slower-aging companion. If these white dwarfs produce X-rays, then we should find roughly a hundred times as many super-soft X-ray sources as we do.

Since both scenarios - an accretion-driven explosion and a merger-driven explosion - involve accretion and fusion at some point, the lack of super-soft X-ray sources would seem to rule out both types of progenitor. The alternative proposed by Di Stefano is that the white dwarfs are not luminous at X-ray wavelengths for long stretches of time. Perhaps material surrounding a white dwarf can absorb X-rays, or accreting white dwarfs might emit most of their energy at other wavelengths.

If this is the correct explanation, says Di Stefano, "we must devise new methods to search for the elusive progenitors of Type Ia supernovae."
-end-


Harvard-Smithsonian Center for Astrophysics

Related Supernova Articles from Brightsurf:

Scientists discover supernova that outshines all others
A supernova at least twice as bright and energetic, and likely much more massive than any yet recorded has been identified by an international team of astronomers, led by the University of Birmingham.

Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.

Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.

Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.

Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.

An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.

Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.

The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.

Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.

Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion

Read More: Supernova News and Supernova Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.