Disruption of circadian rhythm could lead to diabetes

July 12, 2010

DALLAS - July 13, 2010 - Disruption of two genes that control circadian rhythms can lead to diabetes, a researcher at UT Southwestern Medical Center has found in an animal study.

Mice with defective copies of the genes, called CLOCK and BMAL1, develop abnormalities in pancreatic cells that eventually render the cells unable to release sufficient amounts of insulin.

"These results indicate that disruption of the daily clock may contribute to diabetes by impairing the pancreas' ability to deliver insulin," said Dr. Joseph Takahashi, an investigator with the Howard Hughes Medical Institute at UT Southwestern and co-senior author of the study, which appeared in the journal Nature. Dr. Takahashi, who recently joined UT Southwestern as chairman of neuroscience, performed the research with colleagues when he was at Northwestern University.

Circadian rhythms are cyclical patterns in biological activities, such as sleeping, eating, body temperature and hormone production.

The mammalian CLOCK gene, which Dr. Takahashi discovered in 1997, operates in many tissues of the body to regulate circadian rhythms. The gene codes for a protein called a transcription factor, which binds to other genes and controls whether they become active. BMAL1 also codes for a transcription factor that works together with the CLOCK protein.

The researchers examined pancreatic islet beta cells, which secrete insulin when blood sugar levels increase. They genetically engineered some mice to have defective CLOCK genes and some to also lack the BMAL1 gene. The mice also were engineered to contain a bioluminescent molecule that allowed the researchers to detect the circadian clock in pancreatic cells as a fluctuating glow.

Normal islet cells glowed in a 24-hour rhythm, while cells with defective CLOCK genes showed nearly flat rhythms. Cells from different organs exhibited different circadian rhythm patterns, indicating that each organ controls its own internal clocks.

Further study showed that the islet cells in the mutant animals created normal amounts of insulin, but the CLOCK mutant cells were defective in releasing the hormone.

Mice with defective CLOCK genes were prone to obesity and other signs of metabolic syndrome and liver dysfunction. Young mice lacking the BMAL1 gene only in their pancreas, however, had normal body weight and composition, and their behavior followed normal circadian patterns, although their blood sugar levels were abnormally high, the researchers found.

"This finding indicates that disruption of clock genes only in the pancreas, and not the rest of the body clock, can produce early signs of diabetes," Dr. Takahashi said "These studies are important because they show a direct link between the clock in pancreatic beta-cells and glucose regulation. This should aid our understanding of the causes of glucose abnormalities."
-end-
Researchers from Northwestern University led the study, with participation from researchers at the University of Chicago; the University of Wisconsin, Madison; Washington University School of Medicine, St. Louis; and GeneGo Inc.

The study was funded by the National Institutes of Health, the Chicago Biomedical Consortium Searle Funds and the Juvenile Diabetes Research Foundation.

Visit http://www.utsouthwestern.org/endocrinology to learn more about clinical services in endocrinology at UT Southwestern, including treatment of diabetes.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.