Nav: Home

How birds unlock their super-sense, ultraviolet vision

July 12, 2016

The ability of finches, sparrows, and many other birds to see a visual world hidden to us is explained in a study published in the journal eLife.

Birds can be divided into those that can see ultraviolet (UV) light and those that cannot. Those that can live in a sensory world apart, able to transmit and receive signals between each other in a way that is invisible to many other species. How they unlock this extra dimension to their sight is revealed in new findings from the Washington University School of Medicine in St. Louis.

The study reveals two essential adaptions that enable birds to expand their vision into the UV range: chemical changes in light-filtering pigments called carotenoids and the tuning of light-sensitive proteins called opsins.

Birds acquire carotenoids through their diets and process them in a variety of ways to shift their light absorption toward longer or shorter wavelengths. The researchers characterized the carotenoid pigments from birds with violet vision and from those with UV vision and used computational models to see how the pigments affect the number of colors they can see.

"There are two types of light-sensitive cells, called photoreceptors, in the eye: rods and cones. Cone photoreceptors are responsible for color vision. While humans have blue, green, and red-sensitive cones only, birds have a fourth cone type which is either violet or UV-sensitive, depending on the species," says senior author Joseph Corbo, MD, PhD, Associate Professor of Pathology and Immunology.

"Our approach showed that blue-cone sensitivity is fine-tuned through a change in the chemical structure of carotenoid pigments within the photoreceptor, allowing both violet and UV-sighted birds to maximize how many colors they can see."

The study also revealed that sensitivity of the violet/UV cone and the blue cone in birds must move in sync to allow for optimum vision. Among bird species, there is a strong relationship between the light sensitivity of opsins within the violet/UV cone and mechanisms within the blue cone, which coordinate to ensure even UV vision.

Taken together, these results suggest that both blue and violet cone cells have adapted during evolution to enhance color vision in birds.

"The majority of bird species rely on vision as their primary sense, and color discrimination plays a crucial role in their essential behaviors, such as choosing mates and foraging for food. This explains why birds have evolved one of the most richly endowed color vision systems among vertebrates," says first author Matthew Toomey, a postdoctoral fellow at the Washington University School of Medicine.

"The precise coordination of sensitivity and filtering in the visual system may, for example, help female birds discriminate very fine differences in the elaborate coloration of their suitors and choose the fittest mates. This refinement of visual sensitivity could also facilitate the search for hidden seeds, fruits, and other food items in the environment."

The team now plans to investigate the underlying molecular mechanisms that help modify the carotenoid pigments and light-sensitive protein tuning in a wide range of bird species, to gather further insights into the evolution of UV vision.
-end-
Full list of funders: Human Frontier Science Program (HFSP), National Institutes of Health (NIH), Research to Prevent Blindness (RPB), National Science Foundation (NSF), McDonnell Center for Cellular And Molecular Neurobiology, Swedish Research Council, Knut & Alice Wallenberg Foundation, Air Force Office of Scientific Research (AFOSR), Engineering and Physical Sciences Research Council (EPSRC)

Reference 

The paper 'Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds' can be freely accessed online at http://dx.doi.org/10.7554/eLife.15675. Contents, including text, figures, and data, are free to reuse under a CC BY 4.0 license. 

Media contacts  

Emily Packer, eLife 
e.packer@elifesciences.org 
01223 855373 

Judy Martin Finch, Washington University
martinju@wustl.edu
314-286-0105  

About eLife 
 

eLife is a unique collaboration between the funders and practitioners of research to improve the way important research is selected, presented, and shared. eLife publishes outstanding works across the life sciences and biomedicine -- from basic biological research to applied, translational, and clinical studies. All papers are selected by active scientists in the research community. Decisions and responses are agreed by the reviewers and consolidated by the Reviewing Editor into a single, clear set of instructions for authors, removing the need for laborious cycles of revision and allowing authors to publish their findings quickly. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust. Learn more at elifesciences.org.

eLife

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.