Nav: Home

Gas causing ground to rise near Bay of Naples volcano

July 12, 2016

New work by Italian geochemists seems to indicate that the current ground movement around one of the world's most dangerous volcano systems may be due to gas pressure, and not because of a surge of volcanic magma. This work was recently presented at the Goldschmidt conference in Yokohama, Japan (30 June 2016).

The Campi Flegrei (Phlegraean Fields), just across the Bay of Naples from the famous Vesuvius volcano, is amongst the most dangerous volcanos on Earth. In the past it has been capable of a "VEI 7" eruption (Volcanic Explosivity Index of 7, meaning that it has produced an explosive eruption even bigger than the famous Krakatoa eruption of 1883). However, this was around 40,000 years ago. The last eruption, "VEI 2" occurred in 1538 AD.

Because of the geological instability in the area, the land in this area can rise and fall by several metres over just a few years, a phenomenon known as Bradyseism. The last few years have seen the ground in the area begin to rise again, with a 38 cm rise recorded since late 2005*. There have been worries that this may presage an eruption.

The last serious geological unrest in the area was in 1982-84, which saw ground levels rise by up to 1.8m. Most scientists think that the movement in this period was caused by mixed magmatic- hydrothermal activity (although some recent papers in the geochemical literature have suggested a major role for hydrothermal processes supported by deep magmatic gases, with pressurised water causing the land to rise). On the other hand, consensus exists that the current activity is caused by molten magma movement and accumulation under the Campi - which carries a greater risk of an eruption. Now however, a group of Geochemists from Second University of Naples and the Vesuvius Observatory think that the consensus has got it exactly the wrong way round.

Lead researcher, Professor Roberto Moretti (Seconda Università degli Studi di Napoli) commented:

"Everyone accepts the geochemical evidence that current activity has different causes to that of 1982-84. Most geochemists are now showing that the 1982-84 movement was caused by hydrothermal activity and the current activity is caused by magma, but we think that it's exactly the other way round. We have checked geochemical records going back over more than 30 years, and our ongoing interpretation - looking at released gases and physical signals - seem to be consistent with current activity being hydrothermal, with the support of deep magmatic gases, rather than due to magma migration or growth of a shallow (3-4 km deep) magma chamber. We believe that this magma dynamics characterized the 1982-84 episode.

This is apparently better news, at least for now; activity in which magma moves upward and accumulates tends to be associated with an increased chance of an eruption. However the change from hydrothermal to magmatic activity can take place at any time, so we're not in a position to say that everything is well under the Campi Flegrei. The Campi Flegrei is still a very volatile place. What it does show is the difficulty in interpreting the data, even from one of the most-studied volcanic areas in the world. Reconciling all of the data is a major issue, despite our efforts.

Achieving such a unique and consistent interpretation would probably require direct access to underground geochemical, geophysical and geochemical information in the areas of interest. However, there is still a debate over the safety of drilling in such a volatile area".

Commenting, Professor Jon Blundy (University of Bristol) said:

"Interpreting the causes of ground movement at restless volcanoes is an enduring problem for volcanologists. Both hot gases (steam) and magma are candidate causes, but with quite different implications for future eruptive activity. Moretti and others make a compelling case for gas, rather than magma, as the cause of the latest bradyseisms at Campi Flegrei. Their methods could be used at other restless volcanoes where there is evidence of ground uplift"
-end-


Goldschmidt Conference

Related Magma Articles:

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
Research shows why there's a 'sweet spot' depth for underground magma chambers
Computer models show why eruptive magma chambers tend to reside between six and 10 kilometers underground.
'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.
'Amazing snapshots' plumb volcanic depths
Research shedding light on the internal 'plumbing' of volcanoes may help scientists better understand volcanic eruptions and unrest.
Volcanoes fed by 'mush' reservoirs rather than molten magma chambers
Volcanoes are not fed by molten magma formed in large chambers finds a new study, overturning classic ideas about volcanic eruptions.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
Volcano researcher learns how Earth builds supereruption-feeding magma systems
After studying layers of pumice, measuring the amount of crystals in the samples and using thermodynamic models, the team determined that magma moved closer to the surface with each successive eruption.
'Ring around bathtub' at giant volcano field shows movement of subterranean magma
A UW-Madison study is tracing the geologic changes in the Maule volcanoes, located in a region in Chile that has seen enormous eruptions during the last million years.
Researchers find new way to estimate magma beneath Yellowstone supervolcano
Researchers at Washington State University and the University of Idaho have found a new way to estimate how fast magma is recharging beneath the Yellowstone supervolcano.
More Magma News and Magma Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.