Nav: Home

Sharper than living matter permits

July 12, 2016

Anyone who has ever taken a group photo will be familiar with the problem: If everyone is constantly running around, it's almost impossible to get a sharp photo. Cell biologists who want to visualize molecular processes inside cells face a similar challenge. The molecules dance about at high speed. Receptors at the cell surface move within milliseconds, while vesicles transport proteins in seconds. Researchers at the Max Planck Institute of Molecular Physiology in Dortmund have now found a way to pinpoint the positions of individual molecules while at the same time measuring their activity and interactions in the same living cell. A dedicated cooling protocol on a microscope allows to pause cellular life at subzero temperatures, to let it continue to live again after warming. From the series of individual snapshots obtained, the researchers are able to form a precise spatial-temporal picture of the activity patterns of individual molecules within individual cells.

Fluorescence microscopy allows seeing where biological molecules are in cells. However, what Werner Heisenberg formulated for quantum physics to a certain extent has its analogy in biology: In the living state one can observe the collective movement of molecules in cells, which makes it however difficult to determine their exact positions. Paradoxically, the molecular dynamics that sustain life have to be halted to record the position of molecules using high-resolution fluorescence microscopy.

Living matter maintains its structure by energy consumption, which results in dynamic molecular patterns in cells that are difficult to observe by fluorescence microscopy, because the molecules are too numerous and their movements too fast. To tackle this problem a choice needs to be made: to precisely record the position of the molecules in a 'dead' state or to follow their collective behaviour in the living state. Although researchers have been able to stop movements in cells by chemical fixation, such methods lead to irreversible cell death and the acquired images of molecular patterns are not representative of a living system.

Gentle cooling and warming

Scientists led by Philippe Bastiaens of the Max Planck Institute Dortmund have now developed a method that allows them to observe nanometer-sized patterns of biomolecules such as proteins in an arrested but living state. To do so, they lower the temperature of living cells to completely suspend the macromolecular motion in cells. This state, called cryo-arrest, leaves sufficient time to capture high-resolution images of molecular patterns. By adding and removing a cryo-protectant during the cooling and warming processes, the scientists are able to reanimate the arrested cells. The biological processes then resume, and the cells live on.

The researchers are able to cryo-arrest cells several times in sequence and obtain multiple snapshots to reveal motion patterns. "Life is always on the move to maintain its shape and therefore impossible to record accurately. Nevertheless, it is possible to do so with our method of reversible cryo-arrest. In a lose way, we've overridden the biological uncertainty principle," says Bastiaens, head of the Systemic Cell Biology Department.

Signal proteins assemble in clusters

The researchers have been able to record not only the positions but also the activity and interactions of individual proteins. For example, they have found how EGF receptors - membrane proteins that transport growth factors inside cells and play an important role in carcinogenesis - often assemble in nanometer-sized groups on the cell surface. The scientists suspect that the receptors can be activated particularly easily in clusters so that they transmit a stronger growth signal into the interior of the cell.

In the next step, Bastiaens and his associates plan to refine the method and shorten the cooling process from several minutes to milliseconds in order to reversibly arrest cells without cryo-protectants.
-end-
Original paper:

Martin E. Masip, Jan Huebinger, Jens Christmann, Ola Sabet, Frank Wehner, Antonios Konitsiotis, Günther R. Fuhr, and Philippe I. H. Bastiaens
Reversible cryo-arrest for imaging molecules in living cells at high spatial resolution.
Nature Methods; 11 July, 2016

Max-Planck-Gesellschaft

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...