Nav: Home

MSU builds high-tech test track to improve crop performance

July 12, 2016

EAST LANSING, Mich. - Automakers torture test their cars on special tracks that simulate real driving conditions. Germany's automakers have their fabled Nurburgring track. GM has its Desert Proving Ground in California. Now Michigan State University has DEPI - Dynamic Environmental Photosynthetic Imaging - to test-drive plants so scientists and plant breeders can make them work better and produce more.

Many car companies push test models to their limits at Nurburgring before selling them off the showroom floor. For scientists, standard laboratory conditions and reproducible experimental designs have provided much of their understanding of photosynthesis. However, to truly understand one of the world's most-robust biological processes - and many other plant mechanisms - MSU researchers have brought nature to the lab.

The promising capabilities of DEPI are featured on the cover of the current issue of Cell Systems. DEPI will help scientists make better plants by allowing researchers to systematically explore the effects of real-world conditions using sophisticated sensors, cameras, software and more.

"With DEPI and all of its specialized equipment, we can make videos of a plants' living processes," said David Kramer, Hannah Distinguished Professor in Photosynthesis and Bioenergetics at the MSU-DOE Plant Research Laboratory and the paper's co-author. "One way to make better plants is to test drive a range of plants with different genes and determine which genes, or combination of genes, make the plant better in different environmental conditions."

For decades, scientists have been dissecting complex processes like photosynthesis into component parts that are much simpler to study. Focusing on an element, though, can lead to missing what's happening to the entire plant.

Photosynthesis is highly sensitive to rapid changes in environmental conditions like light, temperature, humidity, the availability of water and nutrients etc. Even more critically, when the plant cannot properly control photosynthesis under these conditions, it can produce toxic side reactions that can damage or kill it, leading to loss of yield.

"We now suspect that many, if not most, of the genes in a plant are there to help it cope with environmental changes and perils," Kramer said. "And although we know much about the core machinery of photosynthesis, we have very little idea what these other genes do. Yet these are the very components that not only keep photosynthesis working efficiently but also keep it from killing the plant."

DEPI will not only help shed light on many of these mysteries, but it also will be able to do it at a relatively large scale. Kramer has 16 DEPI's in the MSU Center for Advanced Algal and Plant Phenotyping. In a single DEPI, and its roomy chamber, it can monitor hundreds of plants at the same time.

Scientists can play with light intensities and durations or replay past weather patterns - down to the exact daily fluctuations - or run models of new ones that anticipate the impacts of climate change. The chamber's special cameras can detect and quantify visible signals produced in real time by plants during photosynthesis.

While traditional methods rely on sensors applied to a single leaf at a single point in time, DEPI reveals what is happening in the whole plant, over an unlimited time period, said Jeff Cruz, director of MSU's Center for Advanced Algal and Plant Phenotyping and the paper's lead author.

"As a result, plants are demonstrating a whole range of new processes, most notably varying behaviors under dynamic environmental conditions, such as when light changes rapidly as it might do on a windy day with partially cloudy skies," he said. "Because these simulated conditions are reproducible in DEPI and because of our sophisticated monitors, we can study these processes with high precision and in great detail."
-end-
Kramer's research is funded in part by the Department of Energy Office of Science, Basic Energy Sciences.

Additional MSU scientists contributing to the research include Linda Savage, Robert Zegarac, Christopher Hall, Mio Cruz, Geoffry Davis, Wm. Kent Kovac and Jin Chen.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews

Michigan State University

Related Photosynthesis Articles:

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.
Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.
Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
Structure and function of photosynthesis protein explained in detail
An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I.
More Photosynthesis News and Photosynthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.