Nav: Home

Genes versus chromosomes: A battle for expression in fly testes

July 12, 2016

Unique sex chromosomes occur in species from humans to birds, worms, and flies. An unequal pair of sex chromosomes, each carrying a different complement of genes, requires specific efforts to regulate and balance the expression of sex-chromosomal genes. Like mammals, the fruit fly Drosophila has two different sex chromosomes, with XX females and XY males. A study published on July 12th in PLOS Biology shows that in the Drosophila testes--where unique X sperm and Y sperm are generated--multiple mechanisms vie to regulate expression of genes from the single X chromosome, and these bear witness to an ancient evolutionary struggle for control.

In mammals, a process called meiotic sex chromosome inactivation (MSCI) silences most of the genes on the X and Y sex chromosomes during sperm development. Male mice with defects in MSCI are infertile, suggesting that MSCI is essential for the generation of sperm cells, at least in mice. In Drosophila, there has been no conclusive evidence for the existence of MSCI. But like their mammalian counterparts, fruit fly males presumably need to regulate sex chromosomal gene expression in their testes.

Emily Landeen, from the University of Rochester, USA, and colleagues study gene expression in the germ line (i.e., the testes) of Drosophila males. In previous studies, researchers had created fly strains with random insertions of synthetic genes whose expression can be easily visualized. When these so-called transgenes landed on an autosome (any non-sex chromosome), they were expressed strongly in the testes. However, when the transgene insertions were on the X chromosome, expression in the testes was several-fold weaker.

Based on these results, the researchers concluded that a novel form of sex chromosome-specific transcriptional suppression occurs in Drosophila testes. In this study, they characterize this transcriptional suppression of X-chromosomal genes in detail and explore its evolutionary consequences.

Using experimental fly strains with well-characterized abnormal chromosome constellations (some specifically engineered to move genes normally found on the X to an autosome and vice versa), the researchers found that most genes that originate from the X are transcriptionally suppressed several-fold. Such genes show two- to four-fold higher expression when moved from the repressive environment of the X chromosome to the more permissive environment of the autosomes. Paradoxically, despite the strong transcriptional repression of the X chromosome revealed in the experimental fly strains, X-linked gene expression does not appear repressed in the testes of normal fly strains.

One possible explanation is that promoters, which regulate gene expression, have adapted to overcome the repressive X chromosome environment in the testes. To test this, the researchers performed a computer-based analysis of the DNA sequences in putative promoter regions of testis-expressed genes. Among these, they looked specifically for sequence motifs that are over-represented on the X chromosome compared with autosomes.

The analysis indeed identified several candidate promoter motifs. For one of them, the researchers were able to confirm experimentally that this short stretch of DNA, when placed upstream of a reporter gene on the X chromosome, triggers strong expression in the testes. In other words, if the motif is present upstream of a gene on the X, that gene can overcome X suppression.

The researchers conclude that their findings "show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide transcriptional suppression and the long-term compensatory evolution by sex-linked genes which have recruited strong promoters". Discussing why X suppression might have evolved only for its effects to be cancelled by the adaptation of strong promoters, they suggest that "X suppression may have evolved deep in the past for reasons that no longer hold"-- perhaps as an analog of MSCI-- "and, since then, strong promoters have evolved en masse to compensate".

In any case, the researchers state that "the constrained transcriptional environment of the X chromosome in the testes has consequences for gene expression and genome evolution". One example they mention (and for which they have some experimental support) is that "X suppression [...] may impose an upper limit on the expression level achievable in the testes". "This", they say, "may help to explain why many parent genes on the X chromosome have spawned testes-expressed duplicate genes on the autosomes", namely as "a complementary means to boost expression and compensate for X suppression".
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.plos.org/10.1371/journal.pbio.1002499

Citation: Landeen EL, Muirhead CA, Wright L, Meiklejohn CD, Presgraves DC (2016) Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline. PLoS Biol 14(7): e1002499. doi:10.1371/journal.pbio.1002499

Funding: DCP was supported by grant no. 000596 from the David and Lucile Packard Foundation (http://www.packard.org), grant no. BR-5006 from the Alfred P. Sloan Foundation (http://www.sloan.org), and funds from the University of Rochester. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Chromosomes Articles:

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.
Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.
New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.
Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.
Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.
How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.
GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.
Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.
X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
More Chromosomes News and Chromosomes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.