Nav: Home

Genes versus chromosomes: A battle for expression in fly testes

July 12, 2016

Unique sex chromosomes occur in species from humans to birds, worms, and flies. An unequal pair of sex chromosomes, each carrying a different complement of genes, requires specific efforts to regulate and balance the expression of sex-chromosomal genes. Like mammals, the fruit fly Drosophila has two different sex chromosomes, with XX females and XY males. A study published on July 12th in PLOS Biology shows that in the Drosophila testes--where unique X sperm and Y sperm are generated--multiple mechanisms vie to regulate expression of genes from the single X chromosome, and these bear witness to an ancient evolutionary struggle for control.

In mammals, a process called meiotic sex chromosome inactivation (MSCI) silences most of the genes on the X and Y sex chromosomes during sperm development. Male mice with defects in MSCI are infertile, suggesting that MSCI is essential for the generation of sperm cells, at least in mice. In Drosophila, there has been no conclusive evidence for the existence of MSCI. But like their mammalian counterparts, fruit fly males presumably need to regulate sex chromosomal gene expression in their testes.

Emily Landeen, from the University of Rochester, USA, and colleagues study gene expression in the germ line (i.e., the testes) of Drosophila males. In previous studies, researchers had created fly strains with random insertions of synthetic genes whose expression can be easily visualized. When these so-called transgenes landed on an autosome (any non-sex chromosome), they were expressed strongly in the testes. However, when the transgene insertions were on the X chromosome, expression in the testes was several-fold weaker.

Based on these results, the researchers concluded that a novel form of sex chromosome-specific transcriptional suppression occurs in Drosophila testes. In this study, they characterize this transcriptional suppression of X-chromosomal genes in detail and explore its evolutionary consequences.

Using experimental fly strains with well-characterized abnormal chromosome constellations (some specifically engineered to move genes normally found on the X to an autosome and vice versa), the researchers found that most genes that originate from the X are transcriptionally suppressed several-fold. Such genes show two- to four-fold higher expression when moved from the repressive environment of the X chromosome to the more permissive environment of the autosomes. Paradoxically, despite the strong transcriptional repression of the X chromosome revealed in the experimental fly strains, X-linked gene expression does not appear repressed in the testes of normal fly strains.

One possible explanation is that promoters, which regulate gene expression, have adapted to overcome the repressive X chromosome environment in the testes. To test this, the researchers performed a computer-based analysis of the DNA sequences in putative promoter regions of testis-expressed genes. Among these, they looked specifically for sequence motifs that are over-represented on the X chromosome compared with autosomes.

The analysis indeed identified several candidate promoter motifs. For one of them, the researchers were able to confirm experimentally that this short stretch of DNA, when placed upstream of a reporter gene on the X chromosome, triggers strong expression in the testes. In other words, if the motif is present upstream of a gene on the X, that gene can overcome X suppression.

The researchers conclude that their findings "show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide transcriptional suppression and the long-term compensatory evolution by sex-linked genes which have recruited strong promoters". Discussing why X suppression might have evolved only for its effects to be cancelled by the adaptation of strong promoters, they suggest that "X suppression may have evolved deep in the past for reasons that no longer hold"-- perhaps as an analog of MSCI-- "and, since then, strong promoters have evolved en masse to compensate".

In any case, the researchers state that "the constrained transcriptional environment of the X chromosome in the testes has consequences for gene expression and genome evolution". One example they mention (and for which they have some experimental support) is that "X suppression [...] may impose an upper limit on the expression level achievable in the testes". "This", they say, "may help to explain why many parent genes on the X chromosome have spawned testes-expressed duplicate genes on the autosomes", namely as "a complementary means to boost expression and compensate for X suppression".
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.plos.org/10.1371/journal.pbio.1002499

Citation: Landeen EL, Muirhead CA, Wright L, Meiklejohn CD, Presgraves DC (2016) Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline. PLoS Biol 14(7): e1002499. doi:10.1371/journal.pbio.1002499

Funding: DCP was supported by grant no. 000596 from the David and Lucile Packard Foundation (http://www.packard.org), grant no. BR-5006 from the Alfred P. Sloan Foundation (http://www.sloan.org), and funds from the University of Rochester. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Chromosomes Articles:

Andalusian experts indicate new elements responsible for instability in chromosomes
The researchers state that RNA joins with DNA by chance or because of a disease, the structure of the chromatin, the protein envelope of the chromosomes is altered, causing breaks in the DNA.
Reconstruction of ancient chromosomes offers insight into mammalian evolution
Researchers have gone back in time, at least virtually, computationally recreating the chromosomes of the first eutherian mammal, the long-extinct, shrewlike ancestor of all placental mammals.
Newly discovered DNA sequences can protect chromosomes in rotifers
Rotifers are tough, microscopic organisms highly resistant to radiation and repeated cycles of dehydration and rehydration.
For keeping X chromosomes active, chromosome 19 marks the spot
After nearly 40 years of searching, Johns Hopkins researchers report they have identified a part of the human genome that appears to block an RNA responsible for keeping only a single X chromosome active when new female embryos are formed, effectively allowing for the generally lethal activation of more than one X chromosome during development.
Researchers assemble five new synthetic chromosomes
A global research team has built five new synthetic yeast chromosomes, meaning that 30 percent of a key organism's genetic material has now been swapped out for engineered replacements.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Aging and cancer: An enzyme protects chromosomes from oxidative damage
EPFL scientists have identified a protein that caps chromosomes during cell division and protect them from oxidative damage and shortening, which are associated with aging and cancer.
Protective barrier inside chromosomes helps to keep cells healthy
Fresh insights into the structures that contain our genetic material could explain how the body's cells stay healthy.
How human eggs end up with the wrong number of chromosomes
One day before ovulation, human oocytes begin to divide into what will become mature eggs.
Genes versus chromosomes: A battle for expression in fly testes
Unique sex chromosomes occur in many species. An unequal pair of sex chromosomes, each carrying a different complement of genes, requires specific efforts to regulate and balance the expression of sex-chromosomal genes.

Related Chromosomes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...