Nav: Home

Surprising neutrino decoherence inside supernovae

July 12, 2016

Neutrinos are elementary particles known for displaying weak interactions. As a result, neutrinos passing each other in the same place hardly notice one another. Yet, neutrinos inside a supernova collectively behave differently because of their extremely high density. A new study reveals that neutrinos produced in the core of a supernova are highly localised compared to neutrinos from all other known sources. This result stems from a fresh estimate for an entity characterising these neutrinos, known as wave packets, which provide information on both their position and their momentum. These findings have just been published in EPJ C by Jörn Kersten from the University of Bergen, Norway, and his colleague Alexei Yu. Smirnov from the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. The study suggests that the wave packet size is irrelevant in simpler cases. This means that the standard theory for explaining neutrino behaviour, which does not rely on wavepackets, now enjoys a more sound theoretical foundation.

One of the laws governing particles at the quantum scale - called the uncertainty principle - tells us that we cannot simultaneously know a particle's position and momentum (which is the product of their mass times their velocity) with arbitrary precision. Particles like neutrinos are therefore described by a mathematical entity, called wave packets, the size of which determines the uncertainty in the neutrino's position and momentum.

The authors find that neutrino wave packets in supernovae are unusually small in size. This implies that each individual neutrino displays decoherence. Kersten and Smirnov, however, show that this decoherence effect does not have any impact on the experimental measurement of the oscillation probability for each neutrino flavour; they only demonstrate this result in cases that are similar to, albeit simpler, than what happens in a supernova, where collective effects occur.

In this study, the authors thus provide a theoretical motivation to the use of the standard description of supernova neutrinos, which does not rely on wave packets. Indeed, their findings suggest that collective effects are also unaffected by the neutrino wave packet size, a premise that has yet to be proven.
-end-
References: Decoherence and oscillations of supernova neutrinos. J. Kersten and A. Yu. Smirnov (2016), Eur. Phys. J. C 76: 339, DOI 10.1140/epjc/s10052-016-4187-5

Springer

Related Supernova Articles:

Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.
Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.
Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.
Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.
An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.
Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.
The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.
Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.
Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion
Search for stellar survivor of a supernova explosion
Astronomers have used the NASA/ESA Hubble Space Telescope to observe the remnant of a supernova explosion in the Large Magellanic Cloud.
More Supernova News and Supernova Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.