Nav: Home

Studies find that manipulating gut microbes may reverse the negative effect of a high fat

July 12, 2016

July 12, 2016, Porto, Portugal - Did you know that your gut sends neural messages to the brain to tell it when it is full? Researchers at the University of Georgia, Binghamton University, and Pennsylvania State University have now found that chronic consumption of high fat foods disturbs these neural messages in rats by shifting the populations of bacteria that ordinarily reside inside the gut. Delaying the fullness message can lead to overeating and eventual weight gain. Dr. Claire de La Serre and colleagues found that this negative effect may be reversed by manipulating the gut microbes. This research is to be presented this week at the Annual Meeting of the Society for the Study of Ingestive Behavior (SSIB), the foremost society for research into all aspects of eating and drinking behavior.

In one study the researchers found that high fat feeding reorganizes the gut-to-brain neural pathway and triggers inflammation in brain regions responsible for feeding behavior. High fat diets have been found to dramatically affect the gut microbiota composition, so the researchers tested if these resident microbes may be the connection between the diet and neural changes. De La Serre and colleagues developed a protocol to correct the negative shift in gut microbes. By injecting daily a low dose of a large spectrum antibiotic they were able to reverse the effects of high fat diet on the microbiota composition. Interestingly, when the bacteria composition was brought back to normal, the disturbed gut-brain signals and brain inflammation were also corrected. As a result, antibiotic-treated animals ate less and gained less weight. This shows that the gut bacteria which thrive during a high fat diet are playing a role in the damaging effects of the diet on brain signals. Pursuing this research could eventually lead to bacteria-based therapies for treatment of overeating and obesity.

"We then wanted to test if foods known to have anti-bacterial and anti-inflammatory properties could also reverse the negative effect of a high fat diet, similarly to the antibiotic treatment," explained Claire de La Serre. In a separate study, the researchers fed animals a high fat diet and supplemented some of them with blueberry, a fruit packed with anthocyanins, a natural anti-microbial ingredient. Animals fed blueberries had a completely different microbiota profile, less inflammation, and more stable blood sugar levels. Thus, specific properties of bioactive foods may be used to target and improve the microbiota composition and overall health.
-end-
More information:

Research:

1. Bacteria-driven brain plasticity triggers obesity.

2. Blueberry supplementation impacts gut microbiota and insulin sensitivity in high-fat fed rat.

Authors:

1. First author: Claire de La Serre, University of Georgia, Athens GAC

Co-authors: SH. Lee1, PM. DiLorenzo2, A. Hajnal3, T. Sen1, K. Czaja1, University of Georgia, Athens, GA; 2Binghamton University, Binghamton, NY; 3PennState University, Hershey, PA

2. Lead author: Claire de La Serre, University of Georgia, Athens GA

Co-authors: SH. Lee, R. Kirkland, University of Georgia, Athens GA

Society for the Study of Ingestive Behavior

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.