Nav: Home

Study links overeating in obese mice to altered brain responses to food cues

July 12, 2016

Obese mice are much more likely than lean mice to overeat in the presence of environmental cues, a behavior that could be related to changes in the brain, finds a new study by a Michigan State University neuroscientist. The study is to be presented this week at the Society for the Study of Ingestive Behavior, the foremost society for research into all aspects of eating and drinking behavior.

The findings offer clues in Alexander Johnson's quest to unpack the interconnected mechanisms of overeating and obesity. Obesity is an epidemic domestically -- more than a third of Americans are considered to be obese -- and a growing health problem in other parts of the world.

"In today's society we are bombarded with signals to eat, from fast-food commercials to the smell of barbecue and burgers, and this likely drives overeating behaviors," said Johnson, Assistant Professor of Psychology at Michigan State University. "Our study suggests both a psychological and neurobiological account for why obese individuals may be particularly vulnerable to these signals."

The study involved two groups of mice -- one group that was fed a high-calorie diet until they became obese and a second group that was fed a regular lab chow diet so they stayed lean. Johnson then trained the mice with different auditory cues. Whenever they heard one cue, such as a tone, the mice received sugar reward; with a second cue, such as a white noise, they received no reward.

The mice were then given access to their assigned maintenance diet for three days so they were satiated (i.e., not hungry) for the final test phase of the study. In that test, the sugar solution was available to the mice at all times, to see what would trigger them to start eating. When no cue was given, and when the white-noise cue was given (which previously offered no reward), the lean mice and obese mice ate roughly the same amount. When the rewarding tone cue was given, however, the obese mice ate significantly more of the sugar solution compared to the lean mice.

"From a psychological perspective, this tells us that the obese mice are more vulnerable to the effects of environmental triggers on evoking overeating behavior," Johnson said. "Looking at it through a human lens, this suggests that obese individuals may be more sensitive to overeating food in the presence of say, the McDonald's Golden Arches."

But why? The final part of the study may offer an explanation.

Johnson also examined the mice's lateral hypothalamus, which is known as a key brain area in appetite and feeding behavior. Using a procedure called immunofluorescence to label neurons in this area of the brain, he found that neurons releasing a certain hormone- Melanin-Concentrating Hormone, or MCH -- were more abundant in obese mice. But importantly, these MCH-releasing neurons were more active when the obese mice encountered the environmental reminders of sugar.

"In other words, if you become obese this leads to increases in MCH expression, which may make you more sensitive to this form of overeating," Johnson said.

The novel findings, he added, start to paint a picture of the relationship between brain-behavior mechanisms that may underlie learned overeating in obese individuals.

"This could be one of perhaps many reasons why obese people may have the urge to eat more when presented with food cues."
-end-
The study was funded by the Michigan Diabetes Research Center and the National Institutes of Health.

More information:

Research: Dietary obesity leads to upregulation of feeding signals in lateral hypothalamus and an enhanced vulnerability to overeating in the presence of food cues

Lead Author: Alexander W. Johnson, Department of Psychology, Michigan State University, East Lansing, MI, USA.

Co-authors: Lauren Raycraft and Ryan Gifford

Society for the Study of Ingestive Behavior

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...