Nav: Home

Power up: growing neurons undergo major metabolic shift

July 12, 2016

LA JOLLA--Our brains can survive only for a few minutes without oxygen. Salk Institute researchers have now identified the timing of a dramatic metabolic shift in developing neurons, which makes them become dependent on oxygen as a source of energy.

The findings, published July 12 in the journal eLife reveal a metabolic route thought to go awry in cancer and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.

"There is relatively little understanding about how neuron metabolism is first established," says co-senior author Tony Hunter, holder of the Renato Dulbecco Chair and American Cancer Society Professor in Salk's Molecular and Cell Biology Laboratory. "Aside from enabling us to understand this process during neuronal development, the work also allows us to better understand neurodegenerative disease."

To send messages along neurons is energetically demanding, and the brain uses both oxygen and glucose intensely. The brain, for example, uses 20 percent of the body's glucose supply. The cell's energy-producing factories, called mitochondria, are scattered throughout the long, slender axons of neurons in order to provide all parts of the cell with a constant supply of energy. As the neurons get bigger, so do the number of mitochondria, according to the new study.

We make new neurons in the womb, and this process continues after birth. Even a few areas in the adult brain continue to make new neurons throughout life. "We assume that the metabolic shift we describe in this new study happens every time a progenitor cell turns into a neuron," says the study's first author Xinde Zheng, a Salk research associate.

The cells that eventually become neurons initially use a pathway called glycolysis, which is a major energy-producing process that takes place in the cytoplasm of the cell and turns glucose into energy in the form of adenosine triphosphate (ATP). At some point, however, the cells switch to a more efficient pathway called oxidative phosphorylation, a process that uses oxygen to produce ATP and occurs inside the mitochondria.

Hunter, Zheng, Salk's Leah Boyer and colleagues previously studied a rare metabolic disease called Leigh syndrome and recently published work showing that less ATP is produced in afflicted neurons. In the process of understanding that disease, they needed to recreate it in a dish, using cells with mutations in the DNA contained within mitochondria. But the team realized that it was not well understood how normally dividing cells generate energy while they divide and differentiate into new cell types.

In the new study, Hunter's team found that as a neuron precursor cell becomes a neuron, genes coding for key metabolic enzymes used in glycolysis switch off their expression,. Those changes work hand in hand to shut down glycolysis. All the while, key regulators of oxidative phosphorylation are ramping up.

Most surprising is that developing neurons must completely shut down glycolysis, says Hunter. When the researchers prevented that from happening, the neurons quickly died.

"This is the first comprehensive analysis of metabolic changes during neuronal differentiation, and the surprising reliance of neurons on oxidative phosphorylation for their sole energy source has clear implications for neuronal vulnerability with age," says co-senior investigator Rusty Gage, a professor in Salk's Laboratory of Genetics and holder of the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases.

The group plans to look more closely at how the metabolic genes are controlled in developing cells. They also plan to study neurons harboring energy defects associated with disease, such as Parkinson's disease, and different types of neurons to compare any finer differences in metabolism.
-end-
Other authors on the study are Mingji Jin, Jerome Mertens, Yongsung Kim, Li Ma, Li Ma, and Michael Hamm, all of the Salk Institute.

The research was supported by the National Institutes of Health, the G. Harold and Leila Y. Mathers Charitable Foundation, the JPB Foundation, the Leona M. and Harry B. Helmsley Charitable Trust, Annette Merle-Smith, the California Institute for Regenerative Medicine, and the Helmsley Center for Genomic Medicine.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.