Nav: Home

Robot would assemble modular telescope -- in space

July 12, 2016

BELLINGHAM, Washington, USA -- Enhancing astronomers' ability to peer ever more deeply into the cosmos may hinge on developing larger space-based telescopes. A new concept in space telescope design makes use of a modular structure and an assembly robot to build an extremely large telescope in space, performing tasks in which astronaut fatigue would be a problem.

The robotically assembled modular space telescope (RAMST) design is described by Nicolas Lee and his colleagues at the California Institute of Technology and the Jet Propulsion Laboratory in an article published this week by SPIE, the international society for optics and photonics, in the Journal of Astronomical Telescopes, Instruments, and Systems (JATIS).

Ground-based telescopes are limited by atmospheric effects and by their fixed location on the Earth.

Space-based telescopes do not have those disadvantages but have other limits, such as overall launch vehicle volume and mass capacity.

Design of a modular space telescope that overcomes restrictions on volume and mass could allow telescope components to be launched incrementally, enabling the design and deployment of extremely large space telescopes.

The design detailed by Lee and his colleagues in "Architecture for in-space robotic assembly of a modular space telescope," focuses primarily on a robotic system to perform tasks in which astronaut fatigue would be a problem.

"Our goal is to address the principal technical challenges associated with such an architecture, so that future concept studies addressing a particular science driver can consider robotically assembled telescopes in their trade space," the authors wrote.

The main features of the authors' proposed architecture include a mirror built with a modular structure, a robot to put the telescope together and provide ongoing servicing, and advanced metrology technologies to support the assembly and operation of the telescope.

An optional feature is the potential ability to fly the unassembled components of the telescope in formation. The system architecture is scalable to a variety of telescope sizes and would not be not limited to particular optical designs.

"The capability to assemble a modular space telescope has other potential applications," said Harley Thronson, senior scientist for Advanced Astrophysics Concepts at NASA's Goddard Space Flight Center. "For example, astronomers using major ground-based telescopes are accustomed to many decades of operation, and the Hubble Space Telescope has demonstrated that this is possible in space if astronauts are available. A robotic system of assembly, upgrade, repair, and resupply offers the possibility of very long useful lifetimes of space telescopes of all kinds."

Thronson is a guest editor for the special section on A Future Large-Aperture Ultraviolet/Optical/Infrared Space Observatory in which the new research appears.
-end-
Co-authors with Lee are Sergio Pellegrino, Kristina Hogstrom, and Joel Burdick of the California Institute of Technology; and Paul Backes, Christine Fuller, Brett Kennedy, Junggon Kim, Rudranarayan Mukherjee, Carl Seubert, and Yen-Hung Wu of the Jet Propulsion Lab.

Mark Clampin, James Webb Space Telescope Observatory Project Scientist at NASA Goddard Space Flight Center, is editor-in-chief of the Journal of Astronomical Telescopes, Instruments, and Systems. The journal is published in print and digitally in the SPIE Digital Library, which contains more than 430,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science, engineering, and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2015, SPIE provided more than $5.2 million in support of education and outreach programs. http://www.spie.org

SPIE--International Society for Optics and Photonics

Related Robot Articles:

Meet the most nimble-fingered robot ever built
Roboticists at UC Berkeley have a built a robot that can pick up and move unfamiliar, real-world objects with a 99 percent success rate.
Robot epigenetics: Adding complexity to embodied robot evolution
For the first time, researchers in the field of evolutionary robotics have used physically embodied robots to study epigenetic effects on robot evolution.
Soft robot can help a heart to pump
An innovative soft robotic sleeve which can help a heart to beat has been developed by researchers including Dr.
New robot has a human touch
Most robots achieve grasping and tactile sensing through motorized means, which can be excessively bulky and rigid.
Your next nurse could be a robot
The nursing assistant for your next trip to the hospital might be a robot.
The first autonomous, entirely soft robot
A team of Harvard University researchers with expertise in 3-D printing, mechanical engineering, and microfluidics has demonstrated the first autonomous, untethered, entirely soft robot.
New robot overcomes obstacles
It looks like a bicycle chain, but has just twelve segments about the size of a fist.
Ingestible robot operates in simulated stomach
In experiments involving a simulation of the human esophagus and stomach, researchers at MIT, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch a wound.
Some assembly required to boost robot ratings
Robot makers may want to follow Ikea's strategy for customer satisfaction and give people a chance to partially assemble their new robots to ease acceptance of the devices, according to Penn State researchers.
In emergencies, should you trust a robot?
In emergencies, people may trust robots too much for their own safety, a new study suggests.

Related Robot Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...