Nav: Home

Research shows how to get more crop per drop

July 12, 2016

Boosting food production with limited water availability is of great importance to humanity. However, our current water usage is already unsustainable today. The fact that plant leaves lose a great deal of water through photosynthesis is the greatest limiting factor for larger harvests worldwide. Scientists at the Technical University of Munich (TUM) have developed an approach to solving the problem: they have been able to get plants to use water more efficiently without restricting their growth. This is thanks to a plant-inherent water-conservation strategy that enables plants to absorb carbon dioxide while minimizing water loss.

Plants activate this water-conserving mode when water is scarce. TUM scientists have been able to identify the activating signal and permanently switch on this water-saving mode. This is a possible solution to resolving the issue that about 70 percent of the water consumed worldwide is utilized by the agricultural sector. Unsustainable water extraction, primarily by the agricultural sector, is lowering the continent's groundwater table. Every year, about 50 net cubic miles of water - that is approximately three times the annual water volume cascading at the Niagara Falls - is moved from land to sea, thus contributing to a rise in sea level of about 30 percent. According to the Global Agriculture Report, demand for water is three times higher today than it was 50 years ago. Future prospects: by the year 2050, demand for water in agriculture is expected to increase by another fifth.

About 80 percent of the water released into the atmosphere by land masses does not evaporate right away but travels through plant roots and sustains leaf transpiration. This makes the search for crop plants with improved water utilization a central issue for curbing the high water usage in agriculture and ensuring food security for the future.

How plants regulate gas exchange

Plants control the exchange of carbon dioxide (CO2) and water vapor through pores, referred to as stomata, located on their leaves. Closing the stomata reduces water loss but also impedes CO2 absorption. Depending on temperature and humidity, the absorption of CO2 molecules costs plants about 500 to 1,000 molecules of water. When water is scarce, however, plants are capable of reducing internal CO2 concentrations, thus making CO2 absorption more effective.

"Plants have the ability to cut water loss during CO2 absorption in half," says Erwin Grill, Professor of Botany at TUM - "but they will only switch to this water-saving mode when water is in short supply". With arable crops, plants with a perpetually activated water-saving strategy would preserve the moisture in the ground to use it for growth and survival at a later point in times of drought.

Plant hormone activates water-saving mode

As the team of TUM scientists has discovered, a plant hormone called abscisic acid is responsible for switching the water-saving mode on. This plant hormone is produced in greater quantities in times of water shortage. In the model plant Arabidopsis, also known as mouse-ear cress, there are 14 receptors responsible for perceiving this plant-specific hormone signal. The Munich researchers were able to demonstrate that increased production of some of these receptors will cause plants to switch to the water-saving mode even when water is not in short supply. The catch is that only three of the receptors did not negatively influence plant growth. Up to 40 percent of the water required previously could be saved without affecting the plant's performance.

Initial experiments show water-saving effects under simulated field conditions

"The next step is to see if these water-saving effects can also be observed under field conditions," says Hans Schnyder, Professor of Grassland Studies at TUM and co-author of the study. Initial simulation experiments conducted in phytochambers of the Helmholtz Zentrum München, German Research Center for Environmental Health, support this assumption.

"It remains to be seen if crop plants such as wheat, corn, and rice can produce more biomass with the same amount of water using this mechanism," says Professor Grill. "We are optimistic. Since the mechanisms involved are present in all plants, it should be possible to transfer these results from the model plant Arabidopsis to crop plants. This would be an important step towards ensuring future food security."
-end-
Publication:

Zhenyu Yang, Jinghui Liu, Stefanie V. Tischer, Alexander Christmann, Wilhelm Windisch, Hans Schnyder, and Erwin Grill: Leveraging abscisic acid receptors for efficient water use in Arabidopsis, PNAS 2016. DOI: 10.1073/pnas.1601954113

http://www.pnas.org/content/113/24/6791.abstract

Contact:
Prof. Dr. Erwin Grill
Technical University of Munich
Chair of Botany
Emil-Ramann-Str. 4
D-85354 Freising
Phone: +49.8161.71.5433
Mail: erwin.grill@mytum.de
http://www.botanik.wzw.tum.de

Technical University of Munich (TUM)

Related Agriculture Articles:

Post-pandemic brave new world of agriculture
Recent events have shown how vulnerable the meat processing industry is to COVID-19.
Agriculture - a climate villain? Maybe not!
The UN's Intergovernmental Panel on Climate Change (IPCC) claims that agriculture is one of the main sources of greenhouse gases, and is thus by many observers considered as a climate villain.
Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.
Comparisons of organic and conventional agriculture need to be better, say researchers
The environmental effects of agriculture and food are hotly debated.
EU agriculture not viable for the future
The current reform proposals of the EU Commission on the Common Agricultural Policy (CAP) are unlikely to improve environmental protection, say researchers led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Göttingen in the journal Science.
Global agriculture: Impending threats to biodiversity
A new study compares the effects of expansion vs. intensification of cropland use on global agricultural markets and biodiversity, and finds that the expansion strategy poses a particularly serious threat to biodiversity in the tropics.
A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.
New pathways for sustainable agriculture
Diversity beats monotony: a colourful patchwork of small, differently used plots can bring advantages to agriculture and nature.
The future of agriculture is computerized
Researchers at the MIT Media Lab Open Agriculture Initiative have used computer algorithms to determine the optimal growing conditions to improve basil plants' taste by maximizing the concentration of flavorful molecules known as volatile compounds.
When yesterday's agriculture feeds today's water pollution
Water quality is threatened by a long history of fertilizer use on land, Canadian scientists find.
More Agriculture News and Agriculture Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.