Nav: Home

Ocean warming and acidification impact on calcareous phytoplankton

July 12, 2016

Two new studies recently published in Limnology & Oceanography and Biogeosciences report that ocean warming may exacerbate the impacts of ocean acidification on calcareous phytoplankton, and its evolutionary success and physiological performance will be hampered.

The oceans have absorbed more than a quarter of the human-made carbon dioxide (CO2) in the last century, changing the chemistry of the ocean and resulting in 'ocean acidification'. A rise in average temperatures is also warming the sea surface. The risks posed by warming and acidification are expected to become more acute in the next decades, as CO2 emissions into the atmosphere are increasing.

Coccolithophores is a very abundant calcifying phytoplankton group which plays a major role in the biogeochemical cycle and in the regulation of the global climate. These tiny algae which measure less than one hundredth of a millimeter "form the basis of the aquatic trophic chain, and through calcification and photosynthesis coccolithophores regulate atmospheric and oceanic CO2 levels", says Dr Patrizia Ziveri, ICREA researcher at ICTA-UAB and author of the study. The effects of acidification - and in particular warming - are rarely considered for the organism itself, and there is very little knowledge on how warming and acidification combined may affect the physiological performance or evolutionary success of coccolithophores.

Therefore, it was the aim of the team to investigate not only how temperature affects the impact of acidification on the cocolithophores, but also on the sinking rate and coccolithophores morphogenesis. A culture experiment was conducted on Mediterranean Sea and North Pacific Ocean strains of Emiliania huxleyi, the most abundant coccolitophore species.

Using scanning electron microscope (SEM) imaging, the researchers show in their study that there will be an increase in the percentage of malformed and incomplete coccoliths in a warmer and more acidified ocean. This will hamper the evolutionary success of these calcifiers and their role in regulating atmospheric carbon.

Since coccolithophores need to stay in the photic zone of the oceans, their sinking velocity affects their survival rate. Nothing is known about the response of coccolithophores to acidification and warming in terms of sinking rate, because it had been impossible to estimate sinking rate in the framework of a typical laboratory experiment. The team used a novel approach to calculate sinking rate from cell-architecture and showed that an increase in temperature will lead to an increase in sinking rate. Hence, the faster sinking for the organism itself has an impact on future global carbon cycling and therewith on atmospheric levels of CO2 and global climate.
-end-
This work was funded by the European Union's Seventh Framework Programme under grant agreement 265103 (project MedSeA), the European Research Council (ERC grant 2010-NEWLOG ADG-267931 HE), the Natural Environment Research Council (Grant NE/N011708/1) and the Generalitat de Catalunya (MERS, 2014 SGR - 1356). This work is contributing to the ICTA-UAB 'María de Maeztu Unit of Excellence' (MinECo, MDM2015-0552).

Universitat Autonoma de Barcelona

Related Ocean Acidification Articles:

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.
Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.
Ocean acidification is damaging shark scales
Sharks have unusual type of scales referred to as 'denticles.' A research group from South Africa and Germany that includes Jacqueline Dziergwa and Professor Dr.
New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification boosts algal growth but impairs ecological relationships
Shrimp fed on marine algae grown in acidic water do not undergo a sex change that is a characteristic part of their reproductive life-cycle, report Mirko Mutalipassi and colleagues at Stazione Zoologica Anton Dohrn in Italy in a study publishing June 26 in the open-access journal PLOS ONE.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
Ocean acidification harms cod larvae more than previously thought
The Atlantic cod is one of the most important commercial fish species in the world.
Business as usual for Antarctic krill despite ocean acidification
A new IMAS-led study has found that Antarctic krill are resilient to the increasing acidification of the ocean as it absorbs more C02 from the atmosphere due to anthropogenic carbon emissions.
More Ocean Acidification News and Ocean Acidification Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.