Nav: Home

The colon is defended from bacteria by a self-sacrificing sentinel cell

July 12, 2016

A lone Sentinel cell monitors and coordinates the defense of the entrance to the colon's most sensitive parts. The Sentinel cell detects nearby bacteria and signals to a line of defensive cells to send out a cascade of mucus to push away the invaders. As a final self-sacrificing action the cell commits suicide and ejects itself into the intestinal lumen.

Researchers at the Sahlgrenska Academy, University of Gothenburg, have discovered a new group of cells that can wash away the bacteria that have penetrated through the protective mucus barrier. The discovery, published in the journal Science, may be important in understanding how inflammatory bowel disease, e.g. ulcerative colitis, occurs.

The human colon is protected by a mucus layer that prevents bacteria from coming in direct contact with the tissue, which would otherwise cause inflammation. The protective mucus layer is made up of proteins (mucins) produced and secreted by so-called goblet cells. The research team in Gothenburg has previously shown the presence of a mucus layer as the colon's first line of defense, and the same group now shows that there is also a subset of goblet cells, which form a second line of defense against bacteria that made it through the mucus layer. The discovery is published in the leading international journal Science.

In the colon there are depressions (called crypts) at the bottoms of which are stem cells which constantly produce new intestinal cells. At the entrance of these crypts, a special type of defensive cell has now been discovered.

"These cells are like sentinels guarding the entrance to the crypt. As soon as they discover traces of bacteria in the crypt opening, it starts a chain reaction ending up in a violent mucus explosion that washes away the bacteria", says George Birchenough, a postdoctoral researcher at the Sahlgrenska Academy, University of Gothenburg.

Flushing away bacteria is a suicide mission for the Sentinel.

"When the Sentinel goblet cell is emptied it pushes itself out as a catapult. If this does not prevent the bacterial attack and this continues there are no new sentinels to send forward, thus leaving the crypt open for bacteria invasion and the potential onset of inflammatory bowel disease such as ulcerative colitis", says Professor Gunnar C. Hansson at the Sahlgrenska Academy, who together with Malin Johansson leads research into mucus and mucins at University of Gothenburg.

George Birchenough, a researcher in the group, did most of the work at the microscope, where he analyzed mouse tissue. Through the microscope, he has been recording in real time how the newly discovered cell type triggers the rapid chain reaction that creates the cascade of mucus that washes away bacteria. The group has identified and compiled the mechanisms underlying the chain reaction, and has already begun the next step in the process to establish the role of these cells in disease and to confirm their presence in the human gut.

"It is rare to discover a new type of cell with a previously unknown function, and it is particularly pleasing that all the work done here in Gothenburg by our research group", says Gunnar C. Hansson.

The research group in Gothenburg was the first to discover that the mucus layer in the gut acts as a barrier that separates the intestinal bacteria from the intestinal surface. This discovery has completely changed our understanding of mucosal biology and created a whole new area of research that has since been followed by a series of revolutionary discoveries about how the mucus layer is created, maintained, moves and can be damaged. This has great significance for understanding how our intestinal bacteria interact with us. The researchers are aiming toward new ways to treat a range of intestinal diseases such as ulcerative colitis.
-end-
The article 'A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent secretion Muc2' is published in Science on 24 June.

Link to article: http://science.sciencemag.org/content/352/6293/1535

Press kit: https://gubox.box.com/s/mt1epz0inkhlf0uyyyk12sd0jrp0xtjc

(Contains photos of George Birchenough and Gunnar C Hansson. Video showing how the newly discovered cell type triggers the rapid chain reaction that creates the cascade of mucus that washes away bacteria. The video is 8 seconds but the press kit also contains the video looped in a GIF.)

University of Gothenburg

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.