Nav: Home

Advancing self-driving car design, other shared human- and machine-controlled systems

July 12, 2016

AMHERST, Mass. - University of Massachusetts Amherst computer science graduate students Kyle Wray and Luis Pineda, with their professor Shlomo Zilberstein, today described a new approach to managing the challenge of transferring control between a human and an autonomous system, in a paper they presented at the International Joint Conference on Artificial Intelligence in New York City.

Their theoretical work, tested in experiments in a driving simulator, should help to advance the development of safe semi-autonomous systems (SAS) such as self-driving cars. Such systems rely on human supervision and occasional transfer of control between the human and the automated systems, Zilberstein explains. With substantial support from the National Science Foundation and the auto industry, his lab is working on new approaches to SAS that are controlled collaboratively by a person and a machine while each capitalizes on their distinct abilities.

"Self-driving cars are coming," says Zilberstein, "but the world is fairly chaotic and not many autonomous systems can cope with that yet. My sense is that we're pretty far from having fully autonomous systems in cars." This is because artificial intelligence sensing and decision-making techniques are still limited and no matter how much training and design are used, there is no sufficiently accurate model of the real world that allows such systems to operate reliably.

For example, he suggests, "Trains might be next as a candidate for autonomy, but even then, with a downed branch on the track during a storm, a person may be needed to judge how to proceed safely."

The researcher says the example highlights a significant challenge that SAS research must address, that is, transferring control quickly, safely and smoothly between the system and the person supervising it. Most systems designed to date do not accomplish this. "Paradoxically," says Zilberstein, "as we introduce more autonomy, people become less engaged with the operation of the system and it becomes harder for them to take over control." In the paper presented today, to be published in the conference proceedings, the researchers establish precise requirements to assure that controlling entities can act reliably.

They apply the theoretical framework to semi-autonomous vehicles using a hierarchical or step-wise approach with two levels of reasoning. The high-level route planning takes into account the occasional need to transfer control, without planning it in detail. The actual transfer of control is managed by a detailed, "high-fidelity" model that notifies drivers of their expected actions and constantly monitors their reactions. It can handle situations by stopping the vehicle, for example, when the driver does not respond to the request to take over control, Zilberstein explains. Their analysis of the integrated model shows that it provides important safety guarantees.

The researchers show how to apply this general framework to SAS for vehicles and demonstrate that it maintains what they call "live state." Intuitively, this yields what they call "strong semi-autonomy," meaning that the system is never placed under the responsibility of an entity that is not prepared to handle the situation. Their experiments show that this approach uses both human and vehicle strengths well.

Zilberstein and colleagues plan to integrate this approach using a large-scale realistic driving simulator in collaboration with professors Donald Fisher and Siby Samuel, as well as postdoctoral fellow Timothy Wright of the Arbella Human Performance Lab in UMass Amherst's College of Engineering.

Developing reliable ways to transfer control back to the driver when an anomaly is detected is a crucial component of deploying self-driving cars. This work will allow the researchers to validate the new approach with human drivers controlling a self-driving car while performing a variety of tasks.
-end-


University of Massachusetts at Amherst

Related Artificial Intelligence Articles:

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.
New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence https://doi.org/10.15212/bioi-2020-0014 Announcing a new article publication for BIO Integration journal.
Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.
Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).
Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.
Using artificial intelligence to smell the roses
A pair of researchers at the University of California, Riverside, has used machine learning to understand what a chemical smells like -- a research breakthrough with potential applications in the food flavor and fragrance industries.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.