Release of treated wastewater from hydraulic fracturing contaminates lake

July 12, 2017

Hydraulic fracturing has enabled a domestic oil and gas boom in the U.S., but its rapid growth has raised questions about what to do with the billions of gallons of wastewater that result. Researchers now report that treating the wastewater and releasing it into surface waters has led to the contamination of a Pennsylvania watershed with radioactive material and endocrine-disrupting chemicals. The study appears in ACS' journal Environmental Science & Technology.

In 2015, the unconventional oil and gas extraction method known as hydraulic fracturing, or "fracking," accounted for more than one-half of oil production and two-thirds of gas production in America, according to the U.S. Energy Information Administration. The method's market share is likely to increase even further. Although the technique has resulted in a shift away from coal, which could reduce greenhouse gas emissions, it produces large amounts of wastewater containing radioactive material, salts, metals, endocrine-disrupting chemicals and polycyclic aromatic hydrocarbons that could pose risks to the environment and human health. A Pennsylvania report estimates that in 2015, 10,000 unconventional oil and gas wells in the Marcellus Shale produced 1.7 billion gallons of wastewater. The facilities that collect the water provide only limited treatment before releasing it into surface waters. Bill Burgos and colleagues at Penn State, Colorado State and Dartmouth wanted to see what impact this strategy of treating and releasing fracking wastewater might be having.

The researchers sampled sediments and porewaters from a lake downstream from two facilities that treat fracking wastewater in Pennsylvania. Their analysis detected that peak concentrations of radium, alkaline earth metals, salts and organic chemicals all occurred in the same sediment layer. The two major classes of organic contaminants included nonylphenol ethoxylates, which are endocrine-disrupting chemicals, and polycyclic aromatic hydrocarbons, which are carcinogens. The highest concentrations coincided with sediment layers deposited five to 10 years ago during a peak period of fracking wastewater disposal. Elevated levels of radium were also found as far as 12 miles downstream of the treatment plants. The researchers say that the potential risks associated with this contamination are unknown, but they suggest tighter regulations of wastewater disposal could help protect the environment and human health.
-end-
The authors acknowledge funding from the U.S. Geological Survey, the Penn State Institutes of Energy and the Environment, the Colorado State University School of Global Environmental Sustainability and its Water Center, the Fulbright Program in Colombia and the Universidad Pontifica Bolivariana.

The paper's abstract will be available on July 12 here: http://pubs.acs.org/doi/abs/10.1021/acs.est.7b01696.

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Wastewater Articles from Brightsurf:

New material 'mines' copper from toxic wastewater
A team of scientists led by Berkeley Lab has designed a new material -- called ZIOS (zinc imidazole salicylaldoxime) -- that targets and traps copper ions from wastewater with unprecedented precision and speed.

SARS-CoV-2 RNA detected in untreated wastewater from Louisiana
A group of scientists have detected genetic material from SARS-CoV-2 in untreated wastewater samples collected in April 2020 from two wastewater treatment plants in Louisiana, USA.

Could COVID-19 in wastewater be infectious?
Bar-Zeev, and his postdoc student, Anne Bogler, together with other renowned researchers, indicate that sewage leaking into natural watercourses might lead to infection via airborne spray.

Researchers: What's in oilfield wastewater matters for injection-induced earthquakes
Specifically, he pointed out that oilfield brine has much different properties, like density and viscosity, than pure water, and these differences affect the processes that cause fluid pressure to trigger earthquakes.

Better wastewater treatment? It's a wrap
A shield of graphene helps particles destroy antibiotic-resistant bacteria and the free-floating genes in wastewater treatment plants.

Using electricity to break down pollutants left over after wastewater treatment
Pesticides, pharmaceutical products, and endocrine disruptors are some of the emerging contaminants often found in treated domestic wastewater, even after secondary treatment.

Anammox bacteria generate energy from wastewater while taking a breath
More energy-efficient wastewater treatment may be possible by harnessing anammox bacteria's surprising ability to 'breathe' solid-state matter.

IO hybrid adsorbent to remove hazardous Cadmium(II) from wastewater
In a paper published in NANO, a group of researchers from Hebei University of Technology, Tianjin, China have discovered an effective way to remove heavy metal Cadmium(II) from wastewater.

Using wastewater to monitor COVID-19
A recent review paper from an international research group shows how wastewater could provide a useful tool for monitoring COVID-19 and highlights the further research needed to develop this as a viable method for tracking virus outbreaks.

Rice engineers: Make wastewater drinkable again
Delivering water to city dwellers can become far more efficient, according to Rice University researchers who say it should involve a healthy level of recycled wastewater.

Read More: Wastewater News and Wastewater Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.