Nav: Home

Discovery of brain-like activity in immune system promises better disease treatments

July 12, 2017

The Australian National University (ANU) has led the discovery of brain-like activity in the immune system that promises better treatments for lymphoma, autoimmune diseases and immunodeficiency disorders, which collectively affect millions of people globally.

Lead researcher Ilenia Papa from ANU said the research confirmed for the first time that human immune cells contain particles that have neurotransmitters including dopamine, which plays a crucial role in immune responses.

"These particles were previously thought to only exist in neurons in the brain and we think they are, potentially, an excellent target for therapies to speed up or dampen the body's immune response, depending on the disease you're dealing with," said Ms Papa, a PhD scholar at The John Curtin School of Medical Research (JCSMR), ANU.

Neurons rely on synaptic interactions and neurotransmitters such as dopamine, which are small molecules transmitted across synapses to deliver signals from one cell to another that play a major role in reward-motivated behaviour.

"Like neurons, specialised T cells transfer dopamine to B cells that provides additional 'motivation' for B cells to produce the best antibodies they can to help to clear up an infection," Ms Papa said.

"The human body has developed an advanced form of protection against bacteria, viruses and other foreign bodies that relies on the immune system.

"Immune responses are essential for recognising and defending humans against substances that appear foreign and harmful to the individual."

The research, published in Nature, involved a collaboration with members of a Human Frontier Science Program consortium from the United Kingdom, the United States and Germany, and with other researchers in Italy.

Co-researcher Professor Carola Vinuesa from JCSMR said the new findings opened the door to using available drugs to improve therapies for lymphoma, autoimmunity and immunodeficiency disorders.

"We hope to use these findings to make the immune response to vaccines and infections faster and more productive, and slower and less active for autoimmune conditions where the body attacks itself," Professor Vinuesa said.

The researchers analysed around 200 tissue samples from children who had their tonsils removed, observing the transfer of dopamine from specialised T cells to B cells through a synaptic interaction.

They also worked with a mathematician to model the immune system's brain-like activity in a human in response to vaccines.
-end-


Australian National University

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.