Nav: Home

Finding the proteins that unpack DNA

July 12, 2018

A new method allows researchers to systematically identify specialized proteins that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions. The method, developed by a team of researchers at Penn State, and the shared characteristics of these proteins are described in a paper that appears online on July 12th in the journal Molecular Cell.

"Our genome is very compact, which means there is an accessibility issue," said Lu Bai, assistant professor of biochemistry and molecular biology and of physics at Penn State and senior author of the study. "A variety of proteins need to access DNA to copy its information into the RNA that will eventually be used to make proteins, but DNA is tightly wrapped around proteins called histones that are then packed into bead-like structures called nucleosomes. These tightly packed nucleosomes make it hard for other proteins to bind.

"To solve this problem, cells use what we call 'nucleosome-displacing factors' to invade the condensed DNA and open it up. Until this study, we lacked a general method to screen for these factors and evaluate them."

Nucleosome-displacing factors are a special kind of transcription factor, proteins that bind to short, specific sequences of DNA called binding sites to control gene expression. They are also known as pioneer factors in animal cells. The researchers developed a fast, inexpensive "high-throughput" method to screen and categorize large numbers of transcription factors based on their ability to displace nucleosomes. The method artificially incorporates transcription factor binding sites into the nucleosomes and examines which factors are capable of reducing the presence of nucleosomes.

The researchers identified both new and previously known nucleosome-displacing factors. These factors, particularly those that strongly deplete nucleosomes, tend to be highly abundant in the nucleus and bind very tightly to DNA.

"We think some of these factors can physically compete with nucleosomes for locations on the DNA to bind," said Bai. "They may take advantage of the DNA replication process, when the nucleosome is temporarily disrupted and thus frees up some DNA. Because there are so many of these strong nucleosome-displacing factors in the cell, they immediately hop onto a binding site on the DNA and they refuse to dissociate. It's hard to assemble a nucleosome on top of that."

The researchers also identified some transcription factors that can displace nucleosomes without tapping into the DNA replication process.

"Even though we've known about some of these factors for decades, we still don't have the molecular details of how they work," said Bai. "In the future we hope to investigate, for example, which specific parts of these proteins may be important for nucleosome displacement."

In addition to identifying a suite of new nucleosome-displacing factors, this study provides a proof of concept of this screening method in the relatively simple system of yeast. The researchers plan to extend this method to more complex systems, such as mammals, and to different cell types and developmental stages.

"Pioneer factors are associated with the differentiation of cells into different, specialized cell types," said Bai. "If we can map out the key factors that are involved in cell type transitions, we may eventually be able to design a combination of transcription factors to artificially direct the fate of a cell. At least, that is the dream."
-end-
In addition to Bai, the research team includes Penn State graduate students Chao Yan and Hengye Chen. This work was funded in part by the National Institutes of Health and supported by the Huck Institutes of the Life Sciences.

Penn State

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.