Rice plants evolve to adapt to flooding

July 12, 2018

Although water is essential for plant growth, excessive amounts can waterlog and kill a plant. In South and Southeast Asia, where periodic flooding occurs during the rainy season, the water depth can reach several meters for many months.

Rice varieties known as "deepwater rice" have developed a unique strategy to ensure their own survival. Deepwater rice grows normally in shallow water but in heavy floods increases its height in keeping with rising water levels, to enable the plants to ride out lengthy floods.

A research team comprising Takeshi Kuroha at Tohoku University, Motoyuki Ashikari at Nagoya University, Susan R. McCouch at Cornell University and colleagues in Japan and the U.S.A., have discovered a gene in rice that is critical to its survival in flood conditions. They have also shed light on its molecular function and evolutionary history.

The research group identified the SD1 (SEMIDWARF1), as a key gene responsible for the deepwater rice's response. The SD1 encodes a biosynthesis enzyme of gibberellin - a plant hormone. The gene orchestrates the deepwater rice response via a unique gain-of-function allele. When submerged, rice accumulate ethylene, a gaseous plant hormone. Deepwater rice amplify a signaling relay in which the SD1 gene is transcriptionally activated by an ethylene-responsive transcription factor, OsEIL1a.

The resulting SD1 protein directs increased synthesis of gibberellins, largely one of gibberellin species, GA4, which promote vertical growth in the plant. Further analysis revealed that this conditionally functional variation evolved first in a wild ancestor and was then a target of selection during the domestication of cultivated rice adapted to deepwater environments in Bangladesh.

The SD1 gene is well-known as the Green Revolution gene in rice, where a loss-of-function allele of SD1 confers short plant height, providing lodging resistance and increases the harvest index, generating greater grain yields under high input agricultural systems (Figure 3- left).

A transcriptional gain-of-function allele of the same gene enables deepwater rice to adapt to flooding via the opposite phenotypic response - an increase in plant height. The ability of SD1 to function in such diverse roles in cultivated rice highlights the inherent plasticity of plant response to its environment.

"Extreme weather events caused by climate change could affect food production worldwide," said Kuroha. "Farmers will need to diversify their methods and the cryptic genetic variation found in wild rice genes may offer adaptive solutions for growing resilient crops."
-end-


Tohoku University

Related Flooding Articles from Brightsurf:

Coastal flooding will disproportionately impact 31 million people globally
Indiana University researchers analyzed these geographic regions, which include cities like New Orleans, Bangkok, and Shanghai, using a new global dataset to determine how many people live on river deltas, how many are vulnerable to a 100-year storm surge event, and the ability of the deltas to naturally mitigate impacts of climate change.

New woodlands can help reduce flooding risk within 15 years
New research by the University of Plymouth suggests the planting of more trees could have a significant and positive effect in preventing flash flooding.

Land use change leads to increased flooding in Indonesia
While high greenhouse gas emissions and biodiversity loss are often associated with rapid land-use change in Indonesia, impacts on local water cycles have been largely overlooked.

Climate change: Coastal flooding could threaten up to 20% of global GDP
Coastal flooding events could threaten assets worth up to 20% of the global GDP by 2100, a study in Scientific Reports suggests.

River plants counter both flooding and drought to protect biodiversity
'Water plants are a nuisance in streams, blocking the flow.

Scientists predict dramatic increase in flooding, drought in California
California may see a 54 percent increase in rainfall variability by the end of this century, according to research from a UC Davis atmospheric scientist.

Multiple flooding sources threaten Honolulu's infrastructure
In a study published in Scientific Reports, researchers at the University of Hawai'i at Mānoa, found in the next few decades, sea level rise will likely cause large and increasing percentages of land area to be impacted simultaneously by the three flood mechanisms.

Climate change: Extreme coastal flooding events in the US expected to rise
Extreme flooding events in some US coastal areas could double every five years if sea levels continue to rise as expected, a study published in Scientific Reports suggests.

Study find delta helps to decrease the impact of river flooding
Most coastal cities and ports face a double threat from storm surge and river flooding.

Texas A&M researchers develop flooding prediction tool
By incorporating the architecture of city drainage systems and readings from flood gauges into a comprehensive statistical framework, researchers at Texas A&M University can now accurately predict the evolution of floods in extreme situations like hurricanes.

Read More: Flooding News and Flooding Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.