Nav: Home

Marathon-running molecule could speed up the race for new neurological treatments

July 12, 2019

  • Two proteins that activate the fastest molecule in our nerve cells identified by researchers at University of Warwick
  • Mechanism is responsible for transport through our nervous system
  • Faults in cargo transporters can lead to hereditary spastic paraplegia (HSP) and other neurodegenerative disorders
  • Could lead to therapeutic treatment for people with HSP and neurological disorders
Scientists at the University of Warwick have discovered a new process that sets the fastest molecular motor on its marathon-like runs through our neurons.

The findings, now published in Nature Communications, paves the way towards new treatments for certain neurological disorders.

The research focuses on KIF1C: a tiny protein-based molecular motor that moves along microscopic tubular tracks (called microtubules) within neurons. The motor converts chemical energy into mechanical energy used to transport various cargoes along microtubule tracks, which is necessary for maintaining proper neurological function.

Neurons are cells that form the basis of our nervous system, conducting the vital function of transferring signals between the brain, the spinal cord and the rest of the body. They consist of a soma, dendrites, and an axon, a long projection from the cell that transports signals to other neurons.

Molecular motors need to be inactive and park until their cargo is loaded onto them. Neurons are an unusually long (up to 3 feet) type of nerve cell, and because of this marathon distance, these tiny molecular motors need to keep going until their cargo is delivered at the end.

Insufficient cargo transport is a crucial cause for some debilitating neurological disorders. Faulty KIF1C molecular motors cause hereditary spastic paraplegia, which affects an estimated 135,000 people worldwide. Other studies have also found links between defective molecular motors and neurological disorders such as Alzheimer's disease and dementia.

The research shows how, when not loaded with cargo, KIF1C prevents itself from attaching to microtubule tracks by folding on to itself. The scientists also identified two proteins: PTNPN21 and Hook3, which can attach to the KIF1C molecular motor. These proteins unfold KIF1C, activating it and allowing the motor to attach and run along the microtubule tracks - like firing the starting pistol for the marathon race.

The newly identified activators of KIF1C may stimulate cargo transport within the defective nerve cells of patients with hereditary spastic paraplegia, a possibility the team is currently exploring.

Commenting on the future impact of this research, Dr Anne Straube from Warwick Medical School said: "If we understand how motors are shut off and on, we may be able to design cellular transport machines with altered properties. These could potentially be transferred into patients with defect cellular transport to compensate for the defects. Alternatively they can be used for nanotechnology to build new materials by exploiting their ability to concentrate enzymes or chemical reagents. We are also studying the properties of the motors with patient mutations to understand why they function less well.

"We still know very little about how motors are regulated. There are 45 kinesins expressed in human cells, but we only have an idea how the motors are activated for less than a handful of them. KIF1C is the fastest motor in neurons and the motor that is the most versatile - it delivers cargoes efficiently to all processes in a neuron, not just the axon."
-end-
This research was supported by the Lister Institute of Preventive Medicine, Wellcome, the British Heart Foundation and the University of Warwick.
  • 'PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport' is published in Nature Communications, DOI: 10.1038/s41467-019-10644-9


University of Warwick

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...