Scientists deepen understanding of magnetic fields surrounding Earth and other planets

July 12, 2019

Vast rings of electrically charged particles encircle the Earth and other planets. Now, a team of scientists has completed research into waves that travel through this magnetic, electrically charged environment, known as the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.

The scientists, led by Eun-Hwa Kim, physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), examined a type of wave that travels through the magnetosphere. These waves, called electromagnetic ion cyclotron (EMIC) waves, reveal the temperature and the density of the plasma particles within the magnetosphere, among other qualities.

"Waves are a kind of signal from the plasma," said Kim, lead author of a paper that reported the findings in JGR Space Physics. "Therefore, the EMIC waves can be used as diagnostic tools to reveal some of the plasma's characteristics."

Kim and researchers from Andrews University in Michigan and Kyung Hee University in South Korea focused their research on mode conversion, the way in which some EMIC waves form. During this process, other waves that compress along the direction they travel from outer space collide with Earth's magnetosphere and trigger the formation of EMIC waves, which then zoom off at a particular angle and polarization -- the direction in which all of the light waves are vibrating.

Using PPPL computers, the scientists performed simulations showing that these mode-converted EMIC waves can propagate through the magnetosphere along magnetic field lines at a normal angle that is less than 90 degrees, in relation to the border of the region with space. Knowing such characteristics enables physicists to identify EMIC waves and gather information about the magnetosphere with limited initial information.

A better understanding of the magnetosphere could provide detailed information about how Earth and other planets interact with their space environment. For instance, the waves could allow scientists to determine the density of elements like helium and oxygen in the magnetosphere, as well as learn more about the flow of charged particles from the sun that produces the aurora borealis.

Moreover, engineers employ waves similar to EMIC waves to aid the heating of plasma in doughnut-shaped magnetic fusion devices known as tokamaks. So, studying the behavior of the waves in the magnetosphere could deepen insight into the creation of fusion energy, which takes place when plasma particles collide to form heavier particles. Scientists around the world seek to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

Knowledge of EMIC waves could thus provide wide-ranging benefits. "We are really eager to understand the magnetosphere and how it mediates the effect that space weather has on our planet," said Kim. "Being able to use EMIC waves as diagnostics would be very helpful."
-end-
This study was made available online in April 2019, with the final online publication on May 17, 2019.

This research was supported by the DOE's Office of Science (Fusion Energy Sciences), the National Science Foundation, and the National Aeronautics and Space Administration.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science

DOE/Princeton Plasma Physics Laboratory

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.