Nav: Home

Novel nanoparticles deliver CRISPR gene editing tools into the cell with much higher efficiency

July 12, 2019

MEDFORD/SOMERVILLE, Mass. (July 12, 2019) --A research collaboration between Tufts University and the Chinese Academy of Sciences has led to the development of a significantly improved delivery mechanism for the CRISPR/Cas9 gene editing method in the liver, according to a study published recently in the journal Advanced Materials. The delivery uses biodegradable synthetic lipid nanoparticles that carry the molecular editing tools into the cell to precisely alter the cells' genetic code with as much as 90 percent efficiency. The nanoparticles represent one of the most efficient CRISPR/Cas9 delivery tools reported so far, according to the researchers, and could help overcome technical hurdles to enable gene editing in a broad range of clinical therapeutic applications.

The CRISPR/Cas9 gene editing system has become a powerful research tool uncovering the function of hundreds of genes and is currently being explored as a therapeutic tool for the treatment of various diseases. However, some technical hurdles remain before it can be practical for clinical applications. CRISPR/Cas9 is a large molecular complex, containing both a nuclease (Cas9) that can cut through both strands of a targeted genomic sequence, and an engineered 'single-guide' RNA (sgRNA) that scans the genome to help the nuclease find that specific sequence to be edited. Since it is a large molecular complex, it is difficult to deliver CRISPR/Cas9 directly into the nucleus of the cell, where it can do its work. Others have packed the editing molecules into viruses, polymers, and different types of nanoparticles to get them into the nucleus, but the low efficiency of tranfer has limited their use and potency for clinical applications.

The lipid nanoparticles described in the study encapsulate messenger RNA (mRNA) encoding Cas9. Once the contents of the nanoparticles - including the sgRNA - are released into the cell. The cell's protein-making machinery takes over and creates Cas9 from the mRNA template, completing the gene editing kit. A unique feature of the nanoparticles is made of synthetic lipids comprising disulfide bonds in the fatty chain. When the particles enter the cell, the environment within the cell breaks open the disulfide bond to disassemble the nanoparticles and the contents are quickly and efficiently released into the cell.

"We are just starting to see human clinical trials for CRISPR therapies," said Qiaobing Xu, co-corresponding author of the study and associate professor of biomedical engineering at Tufts University. "There are many diseases that have long been intractable for which CRISPR therapies could offer new hope - for example sickle cell disease, Duchenne muscular dystrophy, Huntington's disease, and even many cancers. Our hope is that this advance will take us another step toward making CRISPR an effective and practical approach to treatment."

The researchers applied the new method to mice, seeking to reduce the presence of a gene coding for PCSK9, the loss of which is associated with lower LDL cholesterol, and reduced risk of cardiovascular disease. "The lipid nanoparticles are one of the most efficient CRISPR/Cas9 carriers we have seen," said Ming Wang, also co-corresponding author of the study and professor at the Chinese Academy of Sciences, Beijing National Laboratory for Molecular Science. "We can actually knock down PCSK9 expression in mice with 80 percent efficiency in the liver, suggesting a real promise for therapeutic applications."
-end-
In addition to the authors quoted above, the study was led by Ji Liu, graduate student and first author, of the Chinese Academy of Sciences, Institute of Chemistry, along with co-authors Jin Chang, Ying Jiang, Lanqun Mao, professors of the Chinese Academy of Sciences, and Xiandi Meng, and Tianmeng Sun from The First Hospital and International Center of Future Science, Jilin University.

This work was partially supported by the National Key Research and Development Program of China (2017YFA0208100, 2016YFA0200104), and the National Science Foundation of China (21778056, 21790390, 21790391, 21621062 and 21435007). Support was also provided by National Institutes of Health (UG3 TR002636-01 and R21 EB024041). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, Xu Q*, and Wang M. "Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles." Advanced Materials 2019 Jun 19:e1902575. DOI: 10.1002/adma 201902575

About Tufts University


Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Tufts University

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...