Some of the biggest raindrops on record found in both clean and dirty air

July 13, 2004

If raindrops on roses are among your favorite things, University of Washington researchers have encountered some monster drops that could change your mind.

On two occasions, separated by four years and thousands of miles and in very different conditions, raindrops were measured at sizes similar to or greater than the largest ever recorded. The largest ones were at least 8 millimeters in diameter, about the same as the largest previously observed, and were possibly a centimeter - about four-tenths of an inch or one-fourth the diameter of a golf ball - according to findings published today in the online edition of Geophysical Research Letters, a journal of the American Geophysical Union.

As they fall toward earth, raindrops don't have the cliché teardrop shape, said Peter Hobbs, a UW atmospheric sciences professor. Instead, they are shaped more like a parachute, or a jellyfish.

"Most of the water is around the rim of the drop, while the upper part of the drop is a very thin film of water," Hobbs said.

When air forces through the thin film at the top, large drops break up into many smaller drops. Large drops also can break up when they collide with other drops. In laboratory conditions, breakup usually happens when the drops reach about 5 millimeters, or about one-fifth of an inch, in diameter. In clouds, when drops reach that size they generally break up in collisions with other drops.

"That's why it's so rare to see a raindrop of 5 millimeters or more on the ground, because it would mean the drop had avoided collisions with the many other drops in a cloud," Hobbs said.

Yet the UW Cloud and Aerosol Research Group recorded raindrops of at least 8 millimeters, and perhaps a centimeter, during research flights through cumulus congestus clouds spawned by a burning forest in Brazil in 1995. Giant raindrops also were recorded during a flight through cumulus clouds in clean marine air over the Marshall Islands in 1999.

Hobbs and Arthur Rangno, a UW atmospheric sciences research meteorologist, are co-authors of the paper documenting the findings. The work was supported by funding from the National Science Foundation and the National Aeronautics and Space Administration.

The scientists speculate the giant raindrops in the polluted air above the burning Amazon forest could have formed around large ash particles, while those in the Marshall Islands might have been spawned by particles of sea salt.

It is not unusual to see large drops in clouds formed in clean marine air because there are fewer particles on which the water can collect, Hobbs said. But smoky air typically produces small raindrops because there are so many particles for the water to condense upon, so it is unclear why the huge raindrops formed over Brazil. He noted that collisions of drops can produce larger drops that then gather up additional small drops as they fall, much as a drip does as it slides down a window pane. That could be what happened in the Brazil storm clouds, as a few favored raindrops fell through, and collected, smaller drops present in large concentrations within particular regions of the clouds.

The scientists discovered the giant raindrops as they culled mountains of data recorded when the research group still operated its own aircraft. The aircraft was sold in 2002, but scientists still are going through data from a number of missions, including campaigns in Africa and the United States, as well as Brazil and the South Pacific.

"We collected so much data on those flights, recording thousands of events a minute, and it will take years to analyze all of the information," Hobbs said. "We just discovered the giant drops by accident when we were looking for something else."
-end-
For more information, contact Hobbs at 206-543-6027 or phobbs@atmos.washington.edu or Rangno at 206-543-7643 or art@atmos.washington.edu.

NOTE: A high-resolution image is available through this news release at http://www.uwnews.org

University of Washington

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.