Chromosome glue repairs damaged DNA

July 13, 2007

When a strand of DNA breaks in the body's cells, it normally does not take long until it has been repaired. Now researchers at the Swedish medical university Karolinska Institutet have discovered a new mechanism that helps to explain how the cell performs these repairs. The results are presented in Science.

The new results are concerned with a phenomenon called cohesion, whereby two copies of a chromosome in the cell nucleus are held tightly together by a protein complex called cohesin. Cohesion fulfils an important function during cell division as the newly copied chromosomes, the sister chromatids, have to stay together until the right moment of separation. If the chromatids come apart too early, there is a risk of the daughter cells getting the wrong number of chromosomes, something that is often observed in tumour cells.

Dr Camilla Sjögren and her research team have now shown that the cell also employs cohesion to repair damaged sister chromatids. Their results show that DNA damage can reactivate cohesin, which runs counter to the commonly held view that cohesion only arises during the DNA copying that takes place before cell division.

Scientists have long been fascinated by the way in which the duplicated chromosomes are separated before cell division so that exactly half the copied genetic material ends up in each daughter cell. Another large research question is how cells repair damaged DNA and consequently prevent cancer, for example.

"We have shown that chromosome segregation and DNA repair are partly dealt with by the same machinery. These findings provide new understanding of two fundamental cellular mechanisms and may also be of value to cancer research," says Dr Sjögren.
-end-
Publication:

"Post-replicative formation of cohesion is required for repair and induced by a single DNA break"
Lena Ström, Charlotte Karlsson, Hanna Betts Lindroos, Sara Wedahl, Yuki Katou, Katsuhiko Shirahige and Camilla Sjögren
Science, 13 July 2007

For further information, please contact:

Press Officer Katarina Sternudd
Tel: +46 (0)8 524 838 95
Mobile: +46 (0) 70 224 38 95
Email: katarina.sternudd@ki.se

Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine. For more information, visit ki.se

Karolinska Institutet

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.