Physicists from 25 countries meeting at K-State to discuss ultrafast laser research

July 13, 2009

Kansas State University's world-renowned physics research with ultrafast intense lasers at the J. R. MacDonald Laboratory is drawing more than 200 top researchers from 25 countries to Manhattan for the second International Conference in Attosecond Physics from July 28-Aug. 1.

The first Attosecond Physics Conference took place in 2007 in Dresden, Germany, at the Max Planck Institute for Complex Systems. Because of the J.R. MacDonald Laboratory's reputation, K-State was chosen to host the second conference.

Dean Zollman, university distinguished professor and head of K-State's department of physics, said that despite the global recession, more than 200 scientists are expected to attend the meeting, and more than half of them are coming from abroad, including almost all of the leading research groups from Europe, Asia and Canada. He said that this conference series is the new forum for the advancement of attosecond technology and science.

Chii-Dong Lin, K-State university distinguished professor of physics and conference co-chair, said that attosecond physics aims at measuring the motion of electrons in atoms, molecules and matter in their own time scale. An attosecond is one billion-billionth of a second.

"When a referee in a football game wants to make sure that a close play at the end zone is a fumble or a touchdown, he often has to rely on viewing the slow motion taken by a TV camera in order to follow how the actual event occurred," Lin said. "In all sports, by analyzing the films, an athlete can learn how to correct his or her technique. Similarly, to know how a chemical reaction ends up with a specific product, the scientists would like to be able to make a 'molecular movie' so they can follow its reaction path and then they can control it."

Because chemical reactions are the consequence of the rearrangement of electrons in the molecules, and the changes in motion of electrons occur on the very short time of attoseconds, attosecond scientists study how to make such ultrafast cameras and how to make measurement with these cameras. Because the molecular movie is not a simple picture, the scientists also must learn how to read the signals taken by them.

Attosecond light pulses were first generated in the 21st century. Today there are only a handful of laboratories in the world capable of making attosecond light pulses. At K-State, Zenghu Chang, professor of physics and a conference co-chair, is a member of this group. Under the guidance of 10 teaching faculty at the J.R. MacDonald Laboratory, more than 60 graduate students, postdoctoral research associates, research faculty and laboratory staff are engaged in research using ultrafast lasers, with funding support from U.S. Department of Energy, Army Research and the National Science Foundation.

As the attosecond technology becomes mature in the future, it would enable scientists to control chemical reactions at the most fundamental level and move the present-day nanotechnology to a new level. K-State's research is expected to contribute an integral part to this effort, Zollman said.

Pioneers of the field are coming to K-State and are serving as the conference honorary chairs. They include Ferenc Krausz of the Max Planck Institute for Quantum Optics in Germany, Paul Corkum of National Research Council of Canada and University of Ottawa, and Katsumi Midorikawa from RIKEN in Japan.

Several K-State scholars will speak at the conference. Ahn-Thu Le, research assistant professor at the J.R. MacDonald Laboratory, will discuss using high harmonic generation to probe fixed-in-space molecular structures. Hiroki Mashiko, research associate in physics, will discuss the fast laser technique of double optical gating. Pedrag Ranitovic, former K-State research associate in physics, will discuss how using attosecond ultraviolet and femtosecond infrared radiation can probe the time dependence of the molecular dissociation process.
-end-
For more information about the second International Conference in Attosecond Physics, e-mail atto-09@phys.ksu.edu or call Lisa McNeil at 785-532-6786. More information also is available at http://jrm.phys.k-state.edu/Atto-09/

Kansas State University

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.