Toxin detection as close as an inkjet printer

July 13, 2009

If that office inkjet printer has become just another fixture, it's time to take a fresh look at it. Similar technology may soon be used to develop paper-based biosensors that can detect certain harmful toxins that can cause food poisoning or be used as bioterrorism agents.

In a paper published in the July issue of Analytical Chemistry, John Brennan and his research team at McMaster University, working with the Sentinel Bioactive Paper Network, describe a method for printing a toxin-detecting biosensor on paper using a FujiFilm Dimatix Materials Printer.

The researchers demonstrated the concept on the detection of acetylcholinesterase (AChE) inhibitors such as paraoxon and aflatoxin B1 on paper using a "lateral flow" sensing approach similar to that used in a home pregnancy test strip.

The process involves formulating an ink like the one found in computer printer cartridges but with special additives to make the ink biocompatible. An ink comprised of biocompatible silica nanoparticles is first deposited on paper, followed by a second ink containing the enzyme, and the resulting bio-ink forms a thin film of enzyme that is entrapped in the silica on paper. When the enzyme is exposed to a toxin, reporter molecules in the ink change colour in a manner that is dependent on the concentration of the toxin in the sample.

This simple and cost-effective method of adhering biochemical reagents to paper is expected to bring the concept of bioactive paper a significant step closer to commercialization. The goal for bioactive paper is to provide a rapid, portable, disposable and inexpensive way of detecting harmful substances, including toxins, pathogens and viruses, without the need for sophisticated instrumentation. The research showed that the printed enzyme retains full activity for at least two months when stored properly, suggesting that such sensor strips should have a good shelf life.

Portable bio-sensing papers are expected to be extremely useful in monitoring environmental and food-based toxins, as well as in remote settings in less industrialized countries where simple bioassays are essential for the first stages of detecting disease.

Applications for bioactive paper also include clinical applications in neuroscience, drug assessment, and pharmaceutical development.
-end-


McMaster University

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.