105-day Mars simulation: US studies focus on improving work performance

July 13, 2009

HOUSTON - From March 31 to July 14, a six-man international crew called an isolation chamber in Moscow their home. The crew, composed of four Russians and two Europeans, simulated a 105-day Mars mission full of experiments and realistic mission scenarios, including emergency situations and 20-minute communications delays.

U.S. participation in the mission consisted of three research teams with experiments evaluating solutions to conditions that impact work performance. The projects evaluated lighting interventions to counter sleep disruption due to shift work or long hours, tested two objective methods of measuring the impact of stress and fatigue on performance, and assessed interactions between crew members and mission control. The three projects were funded by the Houston-based National Space Biomedical Research Institute (NSBRI).

"The mission allowed us to look at the feasibility of certain technologies developed for improving performance by deploying them in an extremely demanding work environment. In this realistic setting, will crews use the technologies and will we get good data?" said Dr. David F. Dinges, leader of the NSBRI group funded from University of Pennsylvania School of Medicine and Rutgers. "Additional goals were to see how different mission situations affected the various performance measures and to evaluate whether the interventions could indeed improve performance."

The 105-Day Mars Mission, a partnership between the Russia's Institute of Biomedical Problems and the European Space Agency, is the precursor to a 520-Day mission scheduled for 2010. The isolation facility consists of several interconnected, modules containing medical and scientific research areas, living quarters, a kitchen, greenhouse and exercise facility.

For researchers, the opportunity to run experiments in this type of environment was invaluable.

"We've done experiments in the sleep lab to test the efficacy of lighting interventions, but that is a highly controlled environment," said Dr. Charles A. Czeisler, leader of the NSBRI project funded from Harvard Medical School, Brigham and Women's Hospital, and University of Colorado. "By transitioning studies into an operational environment, like the 105-Day Mission, we have the opportunity to learn how to best deploy interventions in a realistic mission setting. This analog is a great intermediate step before implementation on an actual spaceflight."

Participation from the crew and mission controllers was excellent. All three NSBRI projects received data throughout the mission. Final data will be received in the coming weeks, and the teams will begin detailed data analysis.

These tests and interventions have an impact beyond the space program," Dinges said. "Many people work night shifts and in high-stress, confined environments that require alertness, such as power plant control rooms, railroad systems, hospitals, military operations, and fire and rescue situations. The things that we are learning here about how to enhance performance will be useful in many work environments."

NSBRI Project Overviews

Lighting Intervention Study (Dr. Charles A. Czeisler, lead investigator): The study compared two different wavelengths of light (in the green spectrum) during night-shift work with a control lighting condition (in the red spectrum). Crew members and mission control personnel participated. The experiment, which replicated studies done in sleep laboratories, examined whether exposure to green-enriched light will help sustain job performance in the middle of the night and when participants have been awake for a long time. The study looked at the impact of the light on melatonin, the body's sleep-promoting hormone. Additional data were collected for the study with participants taking performance tests, wearing watch-like devices that track sleep/wake periods, completing sleep and work logs, and submitting urine and saliva samples.

"Based on previous laboratory studies, we anticipate that during exposure to the shorter wavelength green light that melatonin will be significantly suppressed, resulting in better performance during overnight work," Czeisler said. "The findings will have direct application to night-shift workers."

Monitoring the Impact of Fatigue and Stress on Work Performance (Dr. David F. Dinges, lead investigator): The project tested two novel, unobtrusive, objective methods for monitoring impact of fatigue and stress on work performance. Crew members and mission control personnel participated. One test involved the feasibility of "reading the face" through use of an optical computer recognition system that monitored facial expressions, tracking the shape and movements of the face in three dimensions. Video was taken during brief cognitive tests, to detect the presence of stress, fatigue and negative affect, and will be used to determine the extent to which this approach was feasible during the mission.

The second performance measure used 3- and 10-minute laptop-based Psychomotor Vigilance Tests to detect changes in basic performance involving attention, response speed and impulsivity. The tests require the user to watch for a visual signal and respond quickly and accurately when it appears. Participants took the tests twice daily during day and night work. The tests have been validated in other settings for sensitivity to reduced alertness caused by a variety of factors in spaceflight (e.g., restricted sleep, night-shift work).

Crew Interactions and Autonomy (Dr. Nick Kanas, lead investigator): The study evaluated the mood, interpersonal interactions and performance of crew members and mission control personnel. The groups were studied under two conditions: low crew autonomy (where the work schedule was planned by mission control) and high crew autonomy (where the crew plan and troubleshoot their own work schedule). Through the use of a weekly questionnaire, the project will evaluate the experiment's impact on mission control and on the crew-ground relationship.

"The data gathered on the relative benefits of high versus low autonomy conditions during manned space missions will have relevance not only for future expeditions to the moon and Mars, but also to current on-orbit International Space Station missions," said Dr. Nick Kanas, leader of the NSBRI group funded at University of California, San Francisco.
-end-
Detailed summaries of each project are available on NSBRI's Russian Chamber Study Web page (http://www.nsbri.org/Research/105-DayRussianChamberStudy.html).

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. Research findings will also impact the understanding and treatment of similar medical conditions experienced on Earth. The Institute's science, technology and education projects take place at more than 60 institutions across the United States.

National Space Biomedical Research Institute

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.