Perimeter Institute's Freddy Cachazo wins major international prize

July 13, 2009

Waterloo, Ontario, Canada, July 13, 2009 - Perimeter Institute Faculty member Freddy Cachazo has been awarded the prestigious Gribov Medal from the European Physical Society (EPS), "for his research with others that led to significant simplifications in the calculation of scattering amplitudes in both gauge theories and gravity ones." The Medal is given once every two years for outstanding work in Theoretical Particle Physics and/or Field Theory by a physicist under 35. Dr. Cachazo will accept the medal at a prize ceremony on July 20 at the 2009 EPS-High Energy Physics Conference in Krakow.

Perimeter Institute's Director Neil Turok commented, "We are delighted by this timely recognition of Freddy's remarkable theoretical work. The principles underlying his research are profound. Besides being of immediate utility in the design and interpretation of giant experiments like the LHC, his results will be of enduring significance in the search for a simpler, unified description of nature's physical laws."

In a series of five papers published in 2004 and 2005, Cachazo and his collaborators developed new techniques for calculating the scattering amplitudes of subatomic particles. This work has key implications for experimental investigations into the constituents of matter at particle accelerators such as the Large Hadron Collider (LHC). Upcoming accelerator experiments are expected to detect new particles and forces not accounted for in the Standard Model of physics; these may bring us closer to answering fundamental questions such as how particles acquire mass, or even why matter exists.

In order to discover such new phenomena, it is necessary to first precisely calculate what current theoretical models predict about particle interactions at very high energies. Dr. Cachazo's innovation greatly simplifies these enormously complex calculations.

Accelerators smash subatomic particles together at near light speed, causing interactions which can yield entirely new types of particles in a process called scattering. Scientists measure the resulting outgoing particles, comparing this data against predicted values to determine whether current theoretical models account for all of the phenomena observed. Scattering amplitudes are calculations that yield the theoretical predictions for obtaining various outgoing particles when different incoming particles at various energies collide. They were traditionally calculated using a tool called Feynman diagrams. Thousands of these diagrams were required to calculate even simple particle interactions, and computing predictions about complex interactions, such as those the LHC can produce, was considered intractably difficult.

Dr. Cachazo and his collaborators had a fundamental insight: to calculate scattering amplitudes using the full range of complex numbers (which include real numbers as well as imaginary numbers), rather than only using the real numbers, as in the Feynman diagram method. The innovation ingeniously drew together ideas from quantum field theory and complex analysis, and remarkably, it yielded correct values far more simply and efficiently.

These new techniques are becoming increasingly important in high energy physics. Recent work, for example, has generalized and implemented the techniques in a software program called BlackHat which automatically generates scattering amplitudes that match experimental data very accurately. It is hoped this will greatly accelerate progress in the field.

Cachazo et al's discovery is also exciting for the mystery that lies at its core: why does using complex numbers yield such simple calculational forms for the scattering amplitudes? It appears to point to fundamental, as-yet-undiscovered physics related to theories of space and time. Dr. Cachazo is now pursuing this deeper theoretical understanding with collaborators including Dr. Nima Arkani-Hamed of the Institute for Advanced Study in Princeton, who is also a Perimeter Institute Distinguished Research Chair. These advances have thus opened frontiers in fundamental theory that may propel important discoveries in the years to come.
Further information:

Media Contact:

Angela Robinson
Communications Coordinator
Perimeter Institute for Theoretical Physics
(519) 569-7600 x5051

About Perimeter Institute

Canada's Perimeter Institute for Theoretical Physics is an independent, non-profit, scientific research and educational outreach organization where international scientists cluster to push the limits of our understanding of physical laws and develop new ideas about the very essence of space, time, matter and information. The centre provides a multi-disciplinary environment to foster scientific collaboration in research areas of cosmology, particle physics, quantum foundations, quantum gravity, quantum information, superstring theory, and related disciplines. Located in Waterloo, Ontario, PI also provides a wide array of award winning outreach resources and public lectures for students, teachers and the general public in order to share the joy of research, discovery and innovation. In partnership with the Governments of Ontario and Canada, Perimeter Institute continues to be a successful example of private and public collaboration in science research and education.

Perimeter Institute for Theoretical Physics

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to