Researchers gain insight into mechanism underlying Huntington's

July 13, 2009

LEXINGTON, Ky. (July 13, 2009) - Researchers at the University of Kentucky Markey Cancer Center and Graduate Center for Toxicology (GCT) have gained new insight into the genetic mechanisms underlying Huntington's disease and other neurodegenerative or neuromuscular disorders caused by trinucleotide repeats (or TNRs) in DNA.

The research, performed in the laboratory of Dr. Guo-Min Li, UK professor of toxicology and biochemistry and the Madeline James & Edith Gardner Distinguished Chair in Cancer Research, examined the mechanisms involved in the development of a specific type of genetic mutation known as trinucleotide repeat expansions. Diseases associated with these mutations, including Huntington's disease, are called trinucleotide repeat disorders.

Findings were published today in Nature Structural & Molecular Biology (http://www.nature.com/nsmb/index.html). GCT research scientist Caixia Hou, student Nelson Chan, and professor Liya Gu are coauthors of the study.

"Mutations - the genetic changes in DNA - can lead to many different types of disease, depending on where and in what manner they occur," Li said. "How these genetic changes escape normal DNA repair systems and become ingrained in an affected gene pool leading to familial disorders has been a longstanding subject of study in my laboratory at the UK Medical Center."

The expansion of TNRs at unique sites in the human genome is associated with at least 15 familial, neurodegenerative or neuromuscular disorders. The mechanism of TNR instability is poorly understood. However, because DNA expansions require DNA synthesis, DNA replication and/or DNA repair must be involved.

Two key TNRs, CAG and CTG repeats - associated with Huntington's disease and myotonic dystrophy, respectively - tend to form hairpin structures via strand slippage in the newly synthesized or "nicked" DNA strand during DNA synthesis associated with DNA replication and/or repair. These hairpin structures are highly thermo-stable and do not "melt" under normal physiologic conditions, and thus they are perceived as "fixed" in the DNA once formed, thereby leading to TNR expansions.

Using an extract of human cells, Li and his colleagues identified a novel DNA repair pathway referred to as DNA hairpin repair (HPR), which specifically targets TNR hairpin removal in the daughter DNA strand, ensuring the fidelity of the TNR sequences in the parental strand. It is proposed that defects or inadequacies in the HPR system may be responsible for TNR instability in the disease state.
-end-


University of Kentucky

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.