Improving clinical use of stem cells to repair heart damage

July 13, 2010

Presenting at the UK National Stem Cell Network annual science conference today (13 July), Professor Michael Schneider describes a new approach to treating heart attack and cardiomyopathy using stem cells.

Professor Schneider, British Heart Foundation Professor at Imperial College London, said "Recent clinical trials using stem cells to treat heart damage have been successful in terms of safety but unfortunately the bone marrow stem cells used tend to give only a small improvement in how well the heart is pumping.

"We really want to use stem cells from the patients themselves that we know can give rise to beating heart cells and these are not found in bone marrow. The good news is that we're now finding ways to identify and purify such cells."

Around 1000 patients have been treated in approximately 20 trials worldwide, mostly using bone marrow stem cells or derivatives of bone marrow cells to repair damage caused by heart attack. There has also been a significant body of work looking at ways of producing beating heart cells from stem cells. The best proven approaches to creating new beating heart cells are using embryonic stem cells, induced pluripotent cells and heart-derived stem cells.

Professor Schneider continued: "Using heart-derived stem cells to treat heart attack and cardiomyopathy has some advantages over embryonic and induced pluripotent cells as they are potentially safer. It's also notable that of these three cell types, it's only heart-derived cells that are in current human clinical trials for this sort of treatment.

"The biggest challenge is to make an ideal product for transplant, which would be either a mixture of heart muscle- and blood vessel-forming cells or a pure population of some sort of precursor that could give rise to both muscle and blood vessel cells."

Professor Schneider's team have discovered a way to identify heart stem cells so as to purify them for transplant. They first developed the method in mice and although the identifying markers are quite different in human cells, they have been able to successfully map their knowledge from mice onto humans. This research is funded by the British Heart Foundation, the European Research Council, the European Union (through the EU FP7 CardioCell consortium), the Leducq Foundation and the Medical Research Council.

Professor Schneider said "We've developed a method to identify cells that have three important characteristics: They are definitely stem cells; they have the right molecular machinery turned on in order to become heart muscle or blood vessel; and they don't yet have any of the full characteristics of heart muscle or blood vessel cells such as producing cardiac myosin - an important protein in heart muscle cells."

The next stage of the research is to develop this technique into a method for extracting, purifying and multiplying heart stem cells in the clinic to be used to repair heart damage arising from heart attack or cardiomyopathy. Professor Schneider's laboratory uses advanced robotics, automated microscopy and other high-throughput methods to screen many thousands of experimental conditions in order to devise the best ways to grow the cells and instruct them to go down the route of becoming heart muscle.
-end-


Biotechnology and Biological Sciences Research Council

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.