Brookhaven Lab and BioSET Inc. patent improved growth factor technology

July 13, 2010

UPTON, NY -- Brookhaven Science Associates, the company that manages the U.S. Department of Energy's Brookhaven National Laboratory, and Biosurface Engineering Technologies, Inc. (BioSET) of Rockville, Maryland, have been issued a U.S. patent for an improved second-generation technology for designing synthetic peptides that are important for tissue regeneration. These bioactive peptides are designed to communicate growth signals to cells of damaged tissue in order to foster efficient, rapid healing.

BioSET has an exclusive license for producing these peptides, which hold promise for improving the body's healing response in numerous applications of tissue repair. Developed at Brookhaven Lab, these synthetic peptides, known as growth factor analogs, are easier to produce than natural growth factors or growth factors derived from recombinant techniques.

Tom Roueché, BioSET's president, said, "This newly patented technology builds upon our core method for making synthetic biomimedic peptides that we developed with Brookhaven Lab scientists almost a decade ago. We can now make peptides in higher yields, with more purity, and more cost-effectively than we had done previously."

Louis Peña, the principal researcher at Brookhaven Lab who developed the technology with BioSET, added, "This new platform technology will allow us to make multiple variations of peptides, which can lead to numerous applications in tissue repair. For example, bandages can be designed with growth factor analogs to apply to wounds, or coatings for surgical implants can be made for better localized healing. I'm glad that this technology has progressed so well and may benefit many people with soft-tissue injuries." A soft tissue injury results from damage to muscles, ligaments, or tendons.

BioSET has sublicensed the newly patented technology to Tornier, Inc., a global orthopedic company, to develop synthetic peptides for sports medicine applications, with emphasis on rotator cuff, shoulder, knee, and elbow injuries. The company will develop novel soft-tissue grafts with synthetic human growth factor for orthopedic markets.

"Assessing the role of tissue regeneration and clinical testing of the new growth factor analogs is the next step as we bring these important new treatments to surgeons and their patients," Roueché said. "A previously patented growth factor analog, B2A, designed to improve bone repair, is currently in clinical trials for spinal fusion of the lower back and we remain very encouraged by the early results of these studies."

The U.S. Department of Energy's Office of Science, the National Institutes of Health, and BioSET funded the initial research to develop this growth factor technology. One of three patents related to this technology issued to BSA and BioSET, the new patent (US 7,700,563 B2), was issued on April 20, 2010.
-end-
BioSET is a private, clinical stage company developing proprietary therapeutic peptides as medical devices to improve bone and soft tissue repair. BioSET products incororate chemically synthetic growth factor mimetics with procedure specific biomaterials to address multiple large and clinically relevant applications. The company's lead program combines BNL/BioSET's novel B2A osteo-promotive peptide with a resorbable bone scffold to offer substantial safety and cost benefits to currently available bone grafting alternatives. For more information, contact Tom Roueche, President of BioSET at 301-795-6010.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (http://www.bnl/gov/newsroom), or follow Brookhaven Lab on Twitter (http://twitter.com/BrookhavenLab).

DOE/Brookhaven National Laboratory

Related Peptides Articles from Brightsurf:

Peptides+antibiotic combination may result in a more effective treatment for leishmaniasis
A combination of peptides and antibiotics could be key to eliminating the parasite causing leishmaniasis and avoiding the toxicity to people and animals caused by current drugs.

Designer peptides show potential for blocking viruses, encourage future study
Chemically engineered peptides, designed and developed by a team of researchers at Rensselaer Polytechnic Institute, could prove valuable in the battle against some of the most persistent human health challenges.

Tracking down cryptic peptides
Using a newly developed method, researchers from the University of Würzburg, in cooperation with the University Hospital of Würzburg, were able to identify thousands of special peptides on the surface of cells for the first time.

Synthesis of prebiotic peptides gives clues to the origin of life on Earth
Coordination Compounds Lab of Kazan Federal University started researching prebiotic peptide synthesis in 2013 with the use of the ASIA-330 flow chemistry system.

Peptides that can be taken as a pill
Peptides represent a billion-dollar market in the pharmaceutical industry, but they can generally only be taken as injections to avoid degradation by stomach enzymes.

Harnessing psyllid peptides to fight citrus greening disease
BTI, USDA and UW scientists have identified peptides in the Asian citrus psyllid, an insect that spreads the bacterium that causes citrus greening disease (huanglongbing, HLB).

New technique has potential to protect oranges from citrus greening
Citrus greening, also called Huanglongbing (HLB), is devastating the citrus industry.

Researchers show what drives a novel, ordered assembly of alternating peptides
A team of researchers has verified that it is possible to engineer two-layered nanofibers consisting of an ordered row of alternating peptides, and has also determined what makes these peptides automatically assemble into this pattern.

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.

Ragon Institute study identifies viral peptides critical to natural HIV control
Investigators at the Ragon Institute of MGH, MIT and Harvard have used a novel approach to identify specific amino acids in the protein structure of HIV that appear critical to the ability of the virus to function and replicate.

Read More: Peptides News and Peptides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.