Nav: Home

Wind-turbine placement produces tenfold power increase, Caltech researchers say

July 13, 2011

PASADENA, Calif.--The power output of wind farms can be increased by an order of magnitude--at least tenfold--simply by optimizing the placement of turbines on a given plot of land, say researchers at the California Institute of Technology (Caltech) who have been conducting a unique field study at an experimental two-acre wind farm in northern Los Angeles County.

A paper describing the findings--the results of field tests conducted by John Dabiri, Caltech professor of aeronautics and bioengineering, and colleagues during the summer of 2010--appears in the July issue of the Journal of Renewable and Sustainable Energy.

Dabiri's experimental farm, known as the Field Laboratory for Optimized Wind Energy (FLOWE), houses 24 10-meter-tall, 1.2-meter-wide vertical-axis wind turbines (VAWTs)--turbines that have vertical rotors and look like eggbeaters sticking out of the ground. Half a dozen turbines were used in the 2010 field tests.

Despite improvements in the design of wind turbines that have increased their efficiency, wind farms are rather inefficient, Dabiri notes. Modern farms generally employ horizontal-axis wind turbines (HAWTs)--the standard propeller-like monoliths that you might see slowly turning, all in the same direction, in the hills of Tehachapi Pass, north of Los Angeles.

In such farms, the individual turbines have to be spaced far apart--not just far enough that their giant blades don't touch. With this type of design, the wake generated by one turbine can interfere aerodynamically with neighboring turbines, with the result that "much of the wind energy that enters a wind farm is never tapped," says Dabiri. He compares modern farms to "sloppy eaters," wasting not just real estate (and thus lowering the power output of a given plot of land) but much of the energy resources they have available to them.

Designers compensate for the energy loss by making bigger blades and taller towers, to suck up more of the available wind and at heights where gusts are more powerful. "But this brings other challenges," Dabiri says, such as higher costs, more complex engineering problems, a larger environmental impact. Bigger, taller turbines, after all, mean more noise, more danger to birds and bats, and--for those who don't find the spinning spires visually appealing--an even larger eyesore.

The solution, says Dabiri, is to focus instead on the design of the wind farm itself, to maximize its energy-collecting efficiency at heights closer to the ground. While winds blow far less energetically at, say, 30 feet off the ground than at 100 feet, "the global wind power available 30 feet off the ground is greater than the world's electricity usage, several times over," he says. That means that enough energy can be obtained with smaller, cheaper, less environmentally intrusive turbines--as long as they're the right turbines, arranged in the right way.

VAWTs are ideal, Dabiri says, because they can be positioned very close to one another. This lets them capture nearly all of the energy of the blowing wind and even wind energy above the farm. Having every turbine turn in the opposite direction of its neighbors, the researchers found, also increases their efficiency, perhaps because the opposing spins decrease the drag on each turbine, allowing it to spin faster (Dabiri got the idea for using this type of constructive interference from his studies of schooling fish).

In the summer 2010 field tests, Dabiri and his colleagues measured the rotational speed and power generated by each of the six turbines when placed in a number of different configurations. One turbine was kept in a fixed position for every configuration; the others were on portable footings that allowed them to be shifted around.

The tests showed that an arrangement in which all of the turbines in an array were spaced four turbine diameters apart (roughly 5 meters, or approximately 16 feet) completely eliminated the aerodynamic interference between neighboring turbines. By comparison, removing the aerodynamic interference between propeller-style wind turbines would require spacing them about 20 diameters apart, which means a distance of more than one mile between the largest wind turbines now in use.

The six VAWTs generated from 21 to 47 watts of power per square meter of land area; a comparably sized HAWT farm generates just 2 to 3 watts per square meter.

"Dabiri's bioinspired engineering research is challenging the status quo in wind-energy technology," says Ares Rosakis, chair of Caltech's Division of Engineering and Applied Science and the Theodore von Kármán Professor of Aeronautics and professor of mechanical engineering. "This exemplifies how Caltech engineers' innovative approaches are tackling our society's greatest problems."

"We're on the right track, but this is by no means 'mission accomplished,'" Dabiri says. "The next steps are to scale up the field demonstration and to improve upon the off-the-shelf wind-turbine designs used for the pilot study." Still, he says, "I think these results are a compelling call for further research on alternatives to the wind-energy status quo."

This summer, Dabiri and colleagues are studying a larger array of 18 VAWTs to follow up last year's field study. Video and images of the field site can be found at http://dabiri.caltech.edu/research/wind-energy.html.
-end-
Written by Kathy Svitil

California Institute of Technology

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Engineering: An Illustrated History from Ancient Craft to Modern Technology (Ponderables 100 Achievements That Changed History Who Did What When)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

From ancient aqueducts to soaring skyscrapers, explore engineering milestones over the centuries.


Combining engaging text with captivating images and helpful diagrams, renowned science writer Tom Jackson guides readers through the history of Engineering in the 7th installment of the groundbreaking PonderablesTM series.


Engineering is all around us. From our bridges, tunnels and skyscrapers, to our cars, computers and smartphones, engineering shapes our world and influences just about everything we see and do. And it s been that way for longer than you might think.... View Details


Basic Machines and How They Work
by Naval Education And Training Program (Author)

This revised edition of an extremely clear Navy training manual leaves nothing to be desired in its presentation. Thorough in its coverage of basic theory, from the lever and inclined plane to internal combustion engines and power trains, it requires nothing more than an understanding of the most elementary mathematics.
Beginning with the simplest of machines — the lever — the text proceeds to discussions of the block and tackle (pulleys and hoists), wheel and axle, the inclined plane and the wedge, the screw, and different types of gears (simple, spur, bevel, herringbone, spiral,... View Details


The Book of Massively Epic Engineering Disasters: 33 Thrilling Experiments Based on History's Greatest Blunders (Irresponsible Science)
by Sean Connolly (Author)

It’s hands-on science with a capital “E”—for engineering.

Beginning with the toppling of the Colossus of Rhodes, one of the seven wonders of the ancient world, to the destructive, laserlike sunbeams bouncing off London’s infamous “Fryscraper” in 2013, here is an illustrated tour of the greatest engineering disasters in history, from the bestselling author of The Book of Totally Irresponsible Science.

Each engineering disaster includes a simple, exciting experiment or two using everyday household items to explain the underlying science and put... View Details


The Beginner's Guide to Engineering: Mechanical Engineering
by Mark Huber (Author)

The Beginner’s Guide to Engineering series is designed to provide a very simple, non-technical introduction to the fields of engineering for people with no experience in the fields. Each book in the series focuses on introducing the reader to the various concepts in the fields of engineering conceptually rather than mathematically. These books are a great resource for high school students that are considering majoring in one of the engineering fields, or for anyone else that is curious about engineering but has no background in the field. Books in the series: 1. The Beginner’s Guide to... View Details


The Engineering Book: From the Catapult to the Curiosity Rover, 250 Milestones in the History of Engineering (Sterling Milestones)
by Marshall Brain (Author)

Engineering is where human knowledge meets real-world problems—and solves them. It's the source of some of our greatest inventions, from the catapult to the jet engine. Marshall Brain, creator of the How Stuff Works series and a professor at the Engineering Entrepreneurs Program at NCSU, provides a detailed look at 250 milestones in the discipline. He covers the various areas, including chemical, aerospace, and computer engineering, from ancient history to the present. The topics include architectural wonders like the Acropolis, the Great Wall of China, and the Eiffel Tower; transportation... View Details


101 Things I Learned in Engineering School
by John Kuprenas (Author), Matthew Frederick (Collaborator)

In this unique primer, an experienced civil engineer and instructor presents the physics and fundamentals that underlie the many fields of engineering. Far from a dry, nuts-and-bolts exposition, however, 101 THINGS I LEARNED® IN ENGINEERING SCHOOL probes real-world examples to show how the engineer's way of thinking can-and sometimes cannot-inform our understanding of how things work. Questions from the simple to the profound are illuminated throughout: Why shouldn't soldiers march across a bridge? Why do buildings want to float and cars want to fly? What is the difference between thinking... View Details


Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

About the Book
Since Studying Engineering: A Road Map to a Rewarding Career exploded onto the market in 1995, it has become the best selling Introduction to Engineering textbook of all time. Adopted by over 300 U.S. institutions, and reaching more than 150,000 students, the book has made major inroads into the "sink or swim" paradigm of engineering education. Armed with the book as a powerful tool for "student development," large numbers of engineering programs have implemented Introduction to Engineering courses to improve the academic performance and retention rates of their... View Details


Site Reliability Engineering: How Google Runs Production Systems
by Betsy Beyer (Editor), Chris Jones (Editor), Jennifer Petoff (Editor), Niall Richard Murphy (Editor)

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems?

In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable... View Details


Social Engineering: The Art of Human Hacking
by Christopher Hadnagy (Author), Paul Wilson (Foreword)

The first book to reveal and dissect the technical aspect of many social engineering maneuvers

From elicitation, pretexting, influence and manipulation all aspects of social engineering are picked apart, discussed and explained by using real world examples, personal experience and the science behind them to unraveled the mystery in social engineering.

Kevin Mitnick—one of the most famous social engineers in the world—popularized the term “social engineering.” He explained that it is much easier to trick someone into revealing a password for a system than to exert the... View Details


Inner Engineering: A Yogi's Guide to Joy
by Sadhguru (Author)

NEW YORK TIMES BESTSELLER • Thought leader, visionary, philanthropist, mystic, and yogi Sadhguru presents Western readers with a time-tested path to achieving absolute well-being: the classical science of yoga.

NAMED ONE OF THE TEN BEST BOOKS OF THE YEAR BY SPIRITUALITY & HEALTH

The practice of hatha yoga, as we commonly know it, is but one of eight branches of the body of knowledge that is yoga. In fact, yoga is a sophisticated system of self-empowerment that is capable of harnessing and activating inner energies in such a way that your body and... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."