Nav: Home

Penn researchers show single drug and soft environment can increase platelet production

July 13, 2011

PHILADELPHIA -- Humans produce billions of clot-forming platelets every day, but there are times when there aren't enough of them, such as with certain diseases or during invasive surgery. Now, University of Pennsylvania researchers have demonstrated that a single drug can induce bone marrow cells called megakaryocytes to quadruple the number of platelets they produce.

Jae-Won Shin, a graduate student of pharmacology in Penn's Perelman School of Medicine, and Dennis E. Discher, professor in the Department of Chemical and Biomolecular Engineering in the School of Engineering and Applied Science, led the research. They collaborated with Joe Swift and Ph.D. student Kyle R. Spinler, also of Chemical and Biomolecular Engineering.

Their research was published in the journal Proceedings of the National Academy of Sciences.

Megakaryocytes are the large bone marrow cells that produce platelets, the smaller cell fragments that form clots to seal blood vessels when the vessels are damaged. The amount of platelets they produce relates to their size. Unlike most other cells, when megakaryocytes copy their DNA, they don't split into two cells but continue to grow larger.

"These cells take the relatively unusual step of becoming bigger and bigger, adding multiple nuclei, which you don't see with other cell types," Discher said. "Mature, multinucleated megakaryocytes are better than uni- or bi-nucleated ones; they have more mass and are ready to make more platelets."

When mature, the megakaryocyte will extend a tendril into a neighboring blood vessel; the flow of blood pulls off pieces of the cell, forming platelets. The motor protein myosin-II plays a number of roles in this process; by inhibiting it with a drug known as belebbistatin, the researchers caused megakaryocytes to make up to four times as many platelets as when it is active.

Myosin-II is responsible for many body systems that require contractile tension, such as flexing one's muscles. In many cells, it is responsible for the integrity of the outer membranes, for cell division and for key aspects of adhesion. Because megakaryocytes are best when they are large, multi-nucleated and fragment easily, inhibiting myosin-II helps produce more platelets in three distinct ways.

"The first factor is when cells normally divide, there is a contracting force between the dividing cells that cleave them apart," Shin said. "But if you inhibit myosin, there is no contracting force and cells grow without dividing. That's how they become multi-nucleated and how the cell mass becomes bigger.

"The second factor is cytoskeletal stiffness and tension in the cell. When myosin is active, the cell is stiff and tense like well-toned muscle, but if you inhibit the myosin, the cell becomes flaccid and more easy to push around and fragment," he said.

"The third factor is that cells are able to sense the stiffness of their microscopic environment and react to it, which is also regulated by cellular contractivity," Shin said. "Adhering to bone inhibits megakaryocyte growth; without myosin-II, they grow as if they were adhering to something soft."

By testing the megakaryocytes' growth in different cell culture dishes and gels, the researchers were also able to show that a soft matrix, similar to squishy bone marrow, induced more platelet production than a rigid matrix.

After growing the platelets in Petri dishes saturated with the myosin-II inhibitor blebbistatin, the megakaryocytes were soft enough to spontaneously fragment into platelets. Because platelets need functioning myosin-II to form rigid clots, the researchers subsequently washed away the drug to show that the platelets could still activate.

While the researchers also transplanted blebbistatin-treated human megakaryocytes into genetically modified mice to show that they maintained their increased platelet production within living systems, most of their work was done in vitro to demonstrate that platelets could be successfully synthesized in a lab.

"Platelet transfusions are harder and harder to come by. Not only are there contamination issues, but platelets are also very short-lived," Shin said. "They only last about a week in a transfusion bag. The ability to make them in large quantities could save lives."
-end-
The research was supported by the National Institutes of Health, the Human Frontier Science Program and the American Heart Association.

University of Pennsylvania

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Engineering: An Illustrated History from Ancient Craft to Modern Technology (Ponderables 100 Achievements That Changed History Who Did What When)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

From ancient aqueducts to soaring skyscrapers, explore engineering milestones over the centuries.


Combining engaging text with captivating images and helpful diagrams, renowned science writer Tom Jackson guides readers through the history of Engineering in the 7th installment of the groundbreaking PonderablesTM series.


Engineering is all around us. From our bridges, tunnels and skyscrapers, to our cars, computers and smartphones, engineering shapes our world and influences just about everything we see and do. And it s been that way for longer than you might think.... View Details


Basic Machines and How They Work
by Naval Education And Training Program (Author)

This revised edition of an extremely clear Navy training manual leaves nothing to be desired in its presentation. Thorough in its coverage of basic theory, from the lever and inclined plane to internal combustion engines and power trains, it requires nothing more than an understanding of the most elementary mathematics.
Beginning with the simplest of machines — the lever — the text proceeds to discussions of the block and tackle (pulleys and hoists), wheel and axle, the inclined plane and the wedge, the screw, and different types of gears (simple, spur, bevel, herringbone, spiral,... View Details


101 Things I Learned in Engineering School
by John Kuprenas (Author), Matthew Frederick (Collaborator)

In this unique primer, an experienced civil engineer and instructor presents the physics and fundamentals that underlie the many fields of engineering. Far from a dry, nuts-and-bolts exposition, however, 101 THINGS I LEARNED® IN ENGINEERING SCHOOL probes real-world examples to show how the engineer's way of thinking can-and sometimes cannot-inform our understanding of how things work. Questions from the simple to the profound are illuminated throughout: Why shouldn't soldiers march across a bridge? Why do buildings want to float and cars want to fly? What is the difference between thinking... View Details


Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

About the Book
Since Studying Engineering: A Road Map to a Rewarding Career exploded onto the market in 1995, it has become the best selling Introduction to Engineering textbook of all time. Adopted by over 300 U.S. institutions, and reaching more than 150,000 students, the book has made major inroads into the "sink or swim" paradigm of engineering education. Armed with the book as a powerful tool for "student development," large numbers of engineering programs have implemented Introduction to Engineering courses to improve the academic performance and retention rates of their... View Details


Thermodynamics: An Engineering Approach
by Yunus A. Cengel Dr. (Author), Michael A. Boles (Author)

Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the... View Details


The Book of Massively Epic Engineering Disasters: 33 Thrilling Experiments Based on History's Greatest Blunders (Irresponsible Science)
by Sean Connolly (Author)

It’s hands-on science with a capital “E”—for engineering.

Beginning with the toppling of the Colossus of Rhodes, one of the seven wonders of the ancient world, to the destructive, laserlike sunbeams bouncing off London’s infamous “Fryscraper” in 2013, here is an illustrated tour of the greatest engineering disasters in history, from the bestselling author of The Book of Totally Irresponsible Science.

Each engineering disaster includes a simple, exciting experiment or two using everyday household items to explain the underlying science and put... View Details


Irresistible: The Rise of Addictive Technology and the Business of Keeping Us Hooked
by Adam Alter (Author)

“One of the most mesmerizing and important books I’ve read in quite some time. Alter brilliantly illuminates the new obsessions that are controlling our lives and offers the tools we need to rescue our businesses, our families, and our sanity.” Adam Grant, New York Times bestselling author of Originals and Give and Take

Welcome to the age of behavioral addiction—an age in which half of the American population is addicted to at least one behavior. We obsess over our emails, Instagram likes, and Facebook feeds; we binge on TV episodes... View Details


Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
by Richard G Budynas (Author), Keith J Nisbett (Author)

Shigley's Mechanical Engineering Design is intended for students beginning the study of mechanical engineering design. Students will find that the text inherently directs them into familiarity with both the basics of design decisions and the standards of industrial components. It combines the straightforward focus on fundamentals that instructors have come to expect, with a modern emphasis on design and new applications. The tenth edition maintains the well-designed approach that has made this book the standard in machine design for nearly 50 years. View Details


Basics of Mechanical Engineering
by R K Singal (Author), Mridul Singal (Author), Rishi Singal (Author)

Basics of Mechanical Engineering systematically develops the concepts and principles essential for understanding engineering thermodynamics, mechanics and strength of materials. This book is meant for first year B.Tech students of various technical universities. It will also be helpful for candidates preparing for various competitive examinations. In Basics of Mechanical Engineering Each chapter includes problems selected from university examination papers and question banks. Exhaustive question bank on theory problems at the end of each chapter. Includes all supplementary material required... View Details


Engineering Mechanics: Statics Plus Mastering Engineering with Pearson eText -- Access Card Package (14th Edition) (Hibbeler, The Engineering Mechanics: Statics & Dynamics Series, 14th Edition)
by Russell C. Hibbeler (Author)

NOTE: Before purchasing, check with your instructor to ensure you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, and registrations are not transferable. To register for and use Pearson's MyLab & Mastering products, you may also need a Course ID, which your instructor will provide.

NOTE: Make sure to use the dashes shown on the Access Card Code when entering the code.

 

Used... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.