Nav: Home

Native state is fortunate trap in the journey of protein to its destination, fibril state

July 13, 2018

Within the cell, proteins are continuously formed as linear chains of amino acids using DNA as a template for the sequence. For the protein to become functional, the chain must fold into the low energy 3-dimensional native state. However, the protein can also acquire an alternate aggregated state of lower energy called the fibril state. The fibril state is associated with a number of human diseases like the Alzheimer's disease, Parkinson's disease, type2 diabetes etc.

From a critical analysis of the literature, researchers at UM-DAE Centre for Excellence in Basic Sciences (CEBS), India found that all the folding equilibrium states such as native like state, molten globule, premolten globule or unstructured state have a tendency to associate with other molecules of similar structure to form the fibril state. They also noticed that the amyloid state is the most stable thermodynamic state present in the energy landscape, whereas native state is a metastable state. On the basis of these analyses, they proposed that exposure of relevant peptide sequences/nucleating sites is the requirement for amyloid fibril formation. They also hypothesized that the native State is just a 'fortunate trap' in the Journey of a protein to its destination, the fibrillar state.

Dr Basir Ahmad, Principal Investigator of the Biophysical Chemistry Lab at CEBS explains

The biologically functional form, 'the native state' and folding intermediate states were found to convert into its primordial ground state, amyloid fibril even under physiological condition through structural fluctuations. If the fibril state is thermodynamically more stable than the native state, then it is only the kinetic barriers that prevent spontaneous folding of proteins into fibril state. So, it seems logical to unify folding and aggregation energy funnel.

However, given the difficulty in the determination of thermodynamic stability of the fibril state due to lack of proper theoretical considerations and methodology, Dr Basir concludes that the idea of a fortunate kinetic trap for the native state is sanguine.
-end-
For more information on the study, please visit: http://www.eurekaselect.com/162295

Reference: Ahmad B.; Pramanik S. Exposure of Aggregation-Prone Segments is the Requirement for Amyloid Fibril Formation. Curr Protein Pept Sci. 2018. DOI: 10.2174/1389203719666180521091647

Bentham Science Publishers

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Proteins: Structure and Function
by David Whitford (Author)

Proteins: Structures and Molecular Properties
by Thomas E. Creighton (Author)

Proteins (Explore the molecules of life)
by Tali Lavy (Author), Ofir Corcos (Illustrator)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

Proteins: Biochemistry and Biotechnology
by Gary Walsh (Author)

High Protein Low Carb Cookbook: Delicious High Protein Low Carb Diet Recipes For Burning Fat
by Michelle Cruz (Author)

The High-Protein Vegetarian Cookbook: Hearty Dishes that Even Carnivores Will Love
by Katie Parker (Author), Kristen Smith (Author)

Plant-Protein Recipes That You'll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

The Perfect Protein: The Fish Lover's Guide to Saving the Oceans and Feeding the World
by Andy Sharpless (Author), Suzannah Evans (Author), Bill Clinton (Foreword)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#491 Frankenstein LIVES
Two hundred years ago, Mary Shelley gave us a legendary monster, shaping science fiction for good. Thanks to her, the name of Frankenstein is now famous world-wide. But who was the real monster here? The creation? Or the scientist that put him together? Tune in to a live show from Dragon Con 2018 in Atlanta, as we breakdown the science of Frankenstein, complete with grave robbing and rivers of maggots. Featuring Tina Saey, Lucas Hernandez, Travor Valle, and Nancy Miorelli. Moderated by our own Bethany Brookshire. Related links: Scientists successfully transplant lab-grown lungs into pigs, by Maria Temming on Science...