Nav: Home

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

July 13, 2018

Researchers at Tokyo Institute of Technology have developed a ruthenium-based perovskite catalyst[1] that shows strong activity even at low temperatures (down to 313 K). The reusable catalyst does not require additives, meaning that it can prevent the formation of toxic by-products. The oxidation of sulfides is a commercially important process with broad applications ranging from chemicals production to environmental management.

A research group led by Keigo Kamata and Michikazu Hara of Tokyo Institute of Technology (Tokyo Tech) has succeeded in developing a barium ruthenate (BaRuO3) perovskite -- the first catalyst of its kind shown to be capable of the selective oxidation of sulfides under mild conditions, with molecular oxygen (O2) as the only oxidant and without the need for additives.

Reporting their findings in ACS Applied Materials & Interfaces, the researchers state that BaRuO3 has three advantages over conventional catalysts.

Firstly, it exhibits high performance even at 313 K, a temperature much lower than the 373-423 K range reported in previous systems including other ruthenium- and manganese-based catalysts. Secondly, its high rate of oxygen transfer indicates that it has many potential uses; for example, it is applicable to the oxidative desulfurization[2] of dibenzothiophene, which can produce a 99% yield of pure sulfone. Thirdly, the new catalyst is recyclable -- the present study showed that BaRuO3 could be reused at least three times without loss of performance.

The achievement overcomes several classic limitations, such as the need for additives, toxic reagents and high reaction temperatures to achieve good catalytic performance.

The catalyst has a rhombohedral structure (see Figure 1). While other ruthenium-based catalysts investigated to date such as SrRuO3, CaRuO3 and RuO2 can all be described as having corner-sharing octahedral units, BaRuO3 has face-sharing octahedra. This configuration is thought to be one of the main reasons behind the catalyst's higher oxygen transfer capability.

The way in which BaRuO3 was synthesized -- based on the sol-gel method[3] using malic acid -- was also important. The researchers say: "The catalytic activity and specific surface area of BaRuO3 synthesized by the malic acid-aided method were higher than those of BaRuO3 synthesized by the polymerized complex method."

The study highlights the importance of subtle changes in the nanoscale structure of perovskite catalysts, and could provide promising leads for further research on a wide range of perovskite-based functional materials.
-end-
Technical terms

[1] Perovskite catalyst: Referring to a family of catalysts with the general formula ABO3, which are of great interest due to their structural simplicity, flexibility, good stability and controllable physicochemical properties.

[2] Oxidative desulfurization: An important reaction process for sulfur removal -- this is particularly relevant to the fuel industry and efforts to curb sulfur emissions.

[3] Sol-gel method: A process widely used to prepare novel materials by converting monomers in a colloidal solution (sol) to a network of polymers (gel).

Related Links

A ruthenium-based catalyst with highly active, flat surfaces outperforms metal-based competitors

Reusable ruthenium-based catalyst could be a game-changer for the biomass industry

Tokyo Institute of Technology

Related Technology Articles:

How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
New technology for powder metallurgy
Tecnalia leads EFFIPRO (Energy EFFIcient PROcess of Engineering Materials) project, which shows a new manufacturing process using powder metallurgy.
New milestone in printed photovoltaic technology
A team of researchers at Friedrich-Alexander-Universit├Ąt have achieved an important milestone in the quest to develop efficient solar technology as an alternative to fossil fuels.
Gene Drive Technology: Where is the future?
For this episode of BioScience Talks, we're joined by Gene Drive Committee co-chair James P.
Could Hollywood technology help your health?
The same technology used by the entertainment industry to animate characters such as Gollum in 'The Lord of The Rings' films, will be used to help train elite athletes, for medical diagnosis and even to help improve prosthetic limb development, in a new research center at the University of Bath launched today.
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.
New technology for dynamic projection mapping
It has been thought technically difficult to achieve projection mapping onto a moving/rotating object so that images look as though they are fixed to the object.

Related Technology Reading:

Soonish: Ten Emerging Technologies That'll Improve and/or Ruin Everything
by Kelly Weinersmith (Author), Zach Weinersmith (Author)

Milady Standard Nail Technology
by Milady (Author)

Engineering: An Illustrated History from Ancient Craft to Modern Technology (100 Ponderables)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

Information Technology for Management: Digital Strategies for Insight, Action, and Sustainable Performance
by Efraim Turban (Author), Carol Pollard (Author), Gregory Wood (Author)

Information Technology Project Management
by Kathy Schwalbe (Author)

Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
by James D. Halderman (Author)

Refrigeration and Air Conditioning Technology
by John Tomczyk (Author), Eugene Silberstein (Author), Bill Whitman (Author), Bill Johnson (Author)

Irresistible: The Rise of Addictive Technology and the Business of Keeping Us Hooked
by Adam Alter (Author)

Health Information Management Technology: An Applied Approach
by Nanette B Sayles (Author), American Health Information Management Association (Contributor), Leslie L Gordon (Contributor)

Basic Environmental Technology: Water Supply, Waste Management and Pollution Control (6th Edition)
by Jerry A. Nathanson M.S. P.E. (Author), Richard A. Schneider M.S. P.E. (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Unintended Consequences
Human innovation has transformed the way we live, often for the better. But as our technologies grow more powerful, so do their consequences. This hour, TED speakers explore technology's dark side. Guests include writer and artist James Bridle, historians Yuval Noah Harari and Edward Tenner, internet security strategist Yasmin Green, and journalist Kashmir Hill.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.