Nav: Home

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits

July 13, 2018

Australian scientists have achieved a new milestone in their approach to creating a quantum computer chip in silicon, demonstrating the ability to tune the control frequency of a qubit by engineering its atomic configuration. The work has been published in Science Advances.

A team of researchers from the Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at UNSW Sydney have successfully implemented an atomic engineering strategy for individually addressing closely spaced spin qubits in silicon.

The researchers built two qubits - one an engineered molecule consisting of two phosphorus atoms with a single electron, and the other a single phosphorus atom with a single electron - and placed them just 16 nanometres apart in a silicon chip.

By patterning a microwave antenna above the qubits with precision alignment, the qubits were exposed to frequencies of around 40GHz. The results showed that when changing the frequency of the signal used to control the electron spin, the single atom had a dramatically different control frequency compared to the electron spin in the molecule of two phosphorus atoms.

The UNSW researchers collaborated closely with experts at Purdue University, who used powerful computational tools to model the atomic interactions and understand how the position of the atoms impacted the control frequencies of each electron even by shifting the atoms by as little as one nanometre.

"Individually addressing each qubit when they are so close is challenging," says UNSW Scientia Professor Michelle Simmons, Director CQC2T and co-author of the paper.

"The research confirms the ability to tune neighbouring qubits into resonance without impacting each other."

Creating engineered phosphorus molecules with different separations between the atoms within the molecule allows for families of qubits with different control frequencies. Each molecule can be operated individually by selecting the frequency that controls its electron spin.

"We can tune into this or that molecule - a bit like tuning in to different radio stations," says Sam Hile, lead co-author of the paper and Research Fellow at UNSW.

"It creates a built-in address which will provide significant benefits for building a silicon quantum computer."

Tuning in and individually controlling qubits within a 2 qubit system is a precursor to demonstrating the entangled states that are necessary for a quantum computer to function and carry out complex calculations.

These results show how the team - led by Professor Simmons - have further built on their unique Australian approach of creating quantum bits from precisely positioned individual atoms in silicon.

By engineering the atomic placement of the atoms within the qubits in the silicon chip, the molecules can be created with different resonance frequencies. This means that controlling the spin of one qubit will not affect the spin of the neighbouring qubit, leading to fewer errors - an essential requirement for the development of a full-scale quantum computer.

"The ability to engineer the number of atoms within the qubits provides a way of selectively addressing one qubit from another, resulting in lower error rates even though they are so closely spaced," says Professor Simmons.

"These results highlight the ongoing advantages of atomic qubits in silicon."

This latest advance in spin control follows from the team's recent research into controllable interactions between two qubits.

In June 2018, funding for CQC2T was extended for a further seven years by the Australian Government through the Australian Research Council Centres of Excellence funding scheme. The new Centre will continue its leading research advances with the mission to build the world's first quantum computer in silicon.

Last year, Australia's first quantum computing company - Silicon Quantum Computing Pty Ltd - was established to commercialise CQC2T's world-leading research. Based at the UNSW Sydney, the company has the target of producing a 10-qubit demonstration device in silicon by 2022, as the forerunner to a silicon-based quantum computer.

The Australian government has invested $26 million in the $83 million venture through its National Innovation and Science Agenda, with an additional $25 million coming from UNSW, $14 million from the Commonwealth Bank of Australia, $10 million from Telstra and $8.7 million from the NSW Government.


Isabelle Dubach
UNSW Media
Science | Medicine | Engineering
(02) 9385 7307 | 0401 524 321

Link to pictures:

Password: cqc2t

University of New South Wales

Related Quantum Computer Articles:

Quantum nanoscope
Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Looking for the quantum frontier
Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.
First ever blueprint unveiled to construct a large scale quantum computer
An international team, led by a scientist from the University of Sussex, have today unveiled the first practical blueprint for how to build a quantum computer, the most powerful computer on Earth.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge
Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
Computer scientists find way to make all that glitters more realistic in computer graphics
Iron Man's suit. Captain America's shield. The Batmobile. These all could look a lot more realistic thanks to a new algorithm developed by a team of US computer graphics experts.
Particle zoo in a quantum computer
Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics.
Quantum satellite device tests technology for global quantum network
Researchers at the National University of Singapore and University of Strathclyde, UK, report first data from a satellite that is testing technology for a global quantum network.

Related Quantum Computer Reading:

Quantum Computer Science: An Introduction
by N. David Mermin (Author)

Quantum Computing for Computer Scientists
by Noson S. Yanofsky (Author), Mirco A. Mannucci (Author)

Q is for Quantum
by Terry Rudolph (Author)

Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation)
by Eleanor G. Rieffel (Author), Wolfgang H. Polak (Author), William Gropp (Editor), Ewing Lusk (Editor)

Introduction to Quantum Computers
by Gary D Doolen (Author), Ronnie Mainieri (Author), Gennady P Berman (Author)

An Overview of Quantum Computing: " The State of The Art In Computers "
by Edited by Paul F. Kisak (Author)

Quantum Computation and Quantum Information: 10th Anniversary Edition
by Michael A. Nielsen (Author), Isaac L. Chuang (Author)

Quantum Computing for Babies (Baby University)
by Chris Ferrie (Author), whurley (Author)

Quantum Computing since Democritus
by Scott Aaronson (Author)

The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography
by Simon Singh (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...