Uncovering the architecture of natural photosynthetic machinery

July 13, 2020

Biological membranes play important roles in shaping the cell, sensing the external environment, molecule transport, and generating energy for life. One of the most significant biological membranes are the thylakoid membranes produced in plants, algae and cyanobacteria, which carry out the light reactions of photosynthesis.

Researchers at the University of Liverpool have uncovered the molecular architecture and organisational landscape of thylakoid membranes from a model cyanobacterium in unprecedented detail. The study, which is published in Nature Plants, could help researchers find new and improved artificial photosynthetic technologies for energy production.

Professor Luning Liu, who led the study, explained: "Cyanobacteria perform plant-like photosynthesis. Hence, thylakoid membranes from laboratory-grown cyanobacteria are the ideal model system for studying and tuning plant photosynthesis."

The researchers used state-of-the-art atomic force microscopy (AFM) to probe the structures and organisation of photosynthetic proteins within the thylakoid membranes. The results reveal how thylakoid membranes modulate the abundance of different photosynthetic proteins and form structurally variable complexes to adapt to the changing environments.

Dr Longsheng Zhao, the first author of this paper, said: "We observed that different protein complexes have their specific locations in the thylakoid membranes. We also visualised that distinct photosynthetic complexes can be close to each other, indicating that these photosynthetic complexes can form 'supercomplex' structures to facilitate electron transport between these protein complexes."

Professor Luning Liu, added: "The development of structural biology approaches has greatly improved our understanding of individual photosynthetic complexes. However, these techniques have limitations for studying membrane multi-protein assembly and interactions in their native membrane environment. Our research has proved the power and potential of AFM in exploring complex, dynamic membrane structures and transient protein assembly."

The researchers hope their ongoing work could help find solutions to modulate the photosynthetic efficiency of crop plants to boost plant growth and productivity.
-end-
The project was done in collaboration with the University's Centre for Cell Imaging and researchers from Queen Mary University of London, Shandong University (China), Ocean University of China and Henan University (China). The research at the Liu lab was funded by the BBSRC and the Royal Society.

University of Liverpool

Related Cyanobacteria Articles from Brightsurf:

Artificial cyanobacterial biofilm can sustain green ethylene production for over a month
Ethylene is one of the most important and widely used organic chemicals.

FSU researchers find diverse communities comprise bacterial mats threatening coral reefs
A Florida State University research team found that cyanobacterial mats threatening the health of coral reefs are more diverse and complex than scientists previously knew.

Cyanobacteria as "green" catalysts in biotechnology
Researchers from TU Graz and Ruhr University Bochum show in the journal ACS Catalysis how the catalytic activity of cyanobacteria, also known as blue-green algae, can be significantly increased.

Cyanobacteria from Lake Chad analyzed for toxins
Analysis of dried cyanobacterial cakes from Lake Chad show that they are rich in needed amino acids, but some exceed WHO standards for microcystin, a potent liver toxin.

Uncovering the architecture of natural photosynthetic machinery
Researchers at the University of Liverpool have uncovered the molecular architecture and organisational landscape of thylakoid membranes from a model cyanobacterium in unprecedented detail.

Parasitic fungi keep harmful blue-green algae in check
When a lake is covered with green scums during a warm summer, cyanobacteria -- often called blue-green algae -- are usually involved.

Circadian oscillation of a cyanobacterium doesn't need all three Kai proteins to keep going
Despite conventional understanding that three Kai proteins are required for the circadian oscillation of cyanobacteria, scientists discovered that even when one of them is destroyed, the oscillation is not completely abolished but instead damped.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Method yielding high rate of D-lactate using cyanobacteria could revolutionize bioplastic production
The utilization of bioproduction to synthesize versatile chemical compounds that are usually derived from oil is vital for both the environment and resource sustainability.

Unexpected discovery: Blue-green algae produce oil
Cyanobacteria -- colloquially also called blue-green algae - can produce oil from water and carbon dioxide with the help of light.

Read More: Cyanobacteria News and Cyanobacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.