Nav: Home

Long-studied protein could be a measure of traumatic brain injury

July 13, 2020

Scientists at the Walter Reed Army Institute for Research (WRAIR) have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for traumatic brain injury.

Traumatic brain injury (TBI) or brain trauma results from blows to the head, leading to life-changing disruption of the brain and a cascade of long-term health conditions. A leading cause of disability and death worldwide, TBI may occur due to an open-skull injury, like a gunshot wound, a fall, or an automobile accident. Athletes, the elderly, children, and military service members are particularly vulnerable.

Biomarkers are a source of great interest to researchers due to their potential to dramatically improve both the diagnosis and categorization of severity of TBI. Furthermore, they have the potential to validate treatment strategies by indicating whether drugs have reached their proposed targets and achieved therapeutic benefits.

In their publication in the Journal of Neurotrauma, the researchers showed that levels of cathepsin B were increased in areas of the injured brain relevant to controlling the senses, language, memory and other critical executive functions. In healthy cells, cathepsin B has a range of roles, including helping to eliminate damaged cells, maintaining metabolic homeostasis, and degrading improperly produced proteins. When the level of cathepsin B is not tightly controlled, it is linked to inflammation and tissue death. This publication reports the first results demonstrating the ability to use cathepsin B as a blood-based biomarker to capable of identifying TBI severity within different brain regions as well as cerebral spinal fluid.

"Biomarker tests that accurately reflect the extent and severity of injury can dramatically improve the standard of care, minimizing the need for resource-intensive diagnostics like CT or MRI scans in favor of more portable tests," said Dr. Angela Boutte, lead author and section chief of molecular biology and proteomics within the Brain Trauma Neuroprotection Branch at WRAIR. "This would allow for early, accurate detection of TBI, whether at the side of the road after an accident or, most importantly, on the battlefield to help guide medical decisions."

Future research is planned to further characterize the role of cathepsin B in TBI.
About the Brain Trauma Neuroprotection Branch and the Walter Reed Army Institute of Research (WRAIR)

Dr. Deborah A. Shear is the director of the Brain Trauma Neuroprotection (BTN) Branch, which is part of the Center for Military Psychiatry and Neuroscience at WRAIR. The primary mission of the BTN program is to develop ground-breaking solutions to mitigate the effects of TBI at the point of injury to reduce morbidity and mortality. Providing field-based options for diagnostics, preventative strategies, and treatments are critical to Soldiers. Since 1893, the Walter Reed Army Institute of Research (WRAIR) has been a leader in solving the most significant threats to Soldier readiness and lethality such as disease and battle injury. WRAIR's broad research capabilities at its Washington, D.C., area and expeditionary laboratories function in concert to afford Soldiers the best medical protection and support possible before, during, and after deployment by addressing both longstanding and emerging threats. Though WRAIR's research is focused on Soldier health, its products have important civilian applications, saving countless lives around the world. For more information, visit

About ALSP Inc.

Dr. Gregory Hook, JD, PhD, is the vice-president and co-founder of American Life Science Pharmaceuticals (ALSP), a privately held company based in San Diego, California, USA, developing small molecule drugs for treating neurological conditions, initially focused on traumatic brain injury (TBI). ALSP's drug development approach is to focus on proprietary inhibitors of papain-like cysteine proteases. Mounting evidence shows that one such protease, cathepsin B, inappropriately increases and redistributes in response to TBI and other neurological conditions resulting in the activation of the inflammasome and triggering severe inflammation, apoptotic and necrotic cell death, and vascular damage. ALSP believes these pathways constitute the pathology of neurological conditions and that ALSP's cysteine protease inhibitors will suppress these pathways and thereby be effective therapeutics. For more information visit

About University of California, San Diego

Dr. Vivian Hook is Distinguished Professor of Pharmaceutical Sciences and Neurosciences at the University of California, San Diego. Dr. V. Hook is principal investigator of numerous NIH grants on synaptic neurotransmission in neurodegenerative diseases including traumatic brain injury. The laboratory of Dr. Hook investigates protease mechanisms in TBI and brain disorders which can lead to novel drug targets for therapeutics discovery and development.

About University of Florida

Dr. Kevin K. W. Wang, is the director for Neurotrauma, Neuroproteomics & Biomarkers Research. Dr. Wang is also principal investigator of the VA Merit Award and is Health Research Scientist at Malcom Randall VA Medical Center (Gainesville, FL) where he focuses on advancing Veteran-relevant medical research, as well as improving patient care, management and treatment options.

Walter Reed Army Institute of Research

Related Traumatic Brain Injury Articles:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.
Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.
Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.
Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.
Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.
Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).
Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.
Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.
Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).
Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.
More Traumatic Brain Injury News and Traumatic Brain Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.