UTMB researchers have discovered a new antiviral mechanism for dengue therapeutics

July 13, 2020

GALVESTON, Texas - A multidisciplinary team from The University of Texas Medical Branch at Galveston has uncovered a new mechanism for designing antiviral drugs for dengue virus. The study is currently available in Proceedings of the National Academy of Sciences.

Dengue virus is a very important mosquito-transmitted viral pathogen, causing 390 million human infections each year. Dengue is common in more than 100 countries and forty percent of the world's population is at risk of infection. When someone becomes ill with dengue, symptoms that can range from mild to severe may include fever, nausea/vomiting, rash and muscle/bone/joint aches. Despite this, there are no clinically approved drugs currently available to people who become infected.

In this study, the UTMB team has solved the co-crystal structure of the dengue capsid protein, which forms the interior of virus, in complex with an inhibitor. The co-crystal structure has provided atomic details of how the inhibitor binds the capsid protein and blocks its normal function, leading to the inhibition of viral infection. The structural information has opened new avenues to rationally design inhibitors for antiviral development.

"There are four types of dengue virus, all of which can cause epidemics and disease in humans. The current inhibitor does not inhibit all types of dengue virus. Our co-crystal structure explains why this is the case," said Pei-Yong Shi, I.H. Kempner professor of Human Genetics at UTMB. "Using this new information, we will be able to design new drugs that can inhibit all types of dengue virus. In addition, the structural information will also enable us to make compounds with improved potency and drug-like properties."

"The inhibitor binds four capsid molecules to form a tetramer. Such capsid tetramers are assembled into dengue virus," said Mark White, Associate Professor at UTMB who co-senior authored the study. "However, such a tetramer-containing virus is not able to productively infect new cells. Our study also explains how resistance emerges when dengue virus is treated with the inhibitor. A resistant virus emerges through one amino acid change that weakens the compound binding to the viral capsid protein."

"The World Health Organization lists dengue virus as one of the top ten public health threats and as such requires the urgent development of effective vaccine and therapeutics," said Hongjie Xia, UTMB postdoctoral fellow and lead author of the study. "Although we are currently coping with COVID-19 pandemic, Singapore and other regions are experiencing a record number of dengue human cases. This motivates our team to develop clinical treatments for this devasting disease."
-end-
Other authors include UTMB's Xuping Xie, Jing Zou, William Russell, Luis Marcelo Holthauzen and Kyung Choi.

To develop antiviral drugs, the UTMB team has received grants from National Institutes of Health and philanthropic support from the Sealy & Smith Foundation; Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation; John S. Dunn Foundation; Amon G. Carter Foundation; Gillson Longenbaugh Foundation; Summerfield G. Roberts Foundation.

University of Texas Medical Branch at Galveston

Related Dengue Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Is the COVID-19 pandemic affecting dengue virus case numbers?
The ongoing COVID-19 pandemic has resulted in dramatic changes to human mobility, which has the potential to change the transmission dynamics of other infectious diseases.

Prior Zika virus infection increases risk of severe dengue disease
A new study led by researchers at the University of California, Berkeley, finds that people who have antibodies to the mosquito-borne Zika virus are more vulnerable to developing dengue disease.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Current serotype of dengue virus in Singapore disguises itself to evade vaccines and therapeutics
Singapore saw 1,158 dengue cases in the week ending 13 June 2020, the highest number of weekly dengue cases ever recorded since 2014*.

Understanding the initial immune response after dengue virus infection
This study sheds new light on the body's initial response to dengue virus infection, describing the molecular diversity and specificity of the antibody response.

Mosquitoes engineered to repel dengue virus
An international team of scientists has synthetically engineered mosquitoes that halt the transmission of the dengue virus.

Engineered mosquitoes cannot be infected with or transmit any dengue virus
Genetically engineered mosquitoes are resistant to multiple types of dengue virus (DENV), according to a study published Jan.

Structurally designed DNA star creates ultra-sensitive test for dengue virus
By folding snippets of DNA into the shape of a five-pointed star using structural DNA nanotechnology, researchers have created a trap that captures Dengue virus as it floats in the bloodstream.

Trials promise good news for countries with dengue and Zika virus
Scientists from the University of Melbourne and Glasgow and the Institute for Medical Research in Malaysia have found an effective and environmentally sustainable way to block the transmission of mosquito-borne dengue virus, in trials carried out in Malaysia.

Read More: Dengue Virus News and Dengue Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.