Biological clock more influenced by temperature than light

July 14, 2003

Getting over jet lag may be as simple as changing the temperature --your brain temperature, that is.

That's a theory proposed by Erik Herzog, Ph.D. assistant professor of biology in Arts & Sciences at Washington University in St. Louis. Herzog has found that the biological clocks of rats and mice respond directly to temperature changes.

Biological clocks, which drive circadian rhythms, are found in almost every living organism. In mammals, including humans, these clocks are responsible for 24-hour cycles in alertness and hormone levels, for instance. The control panel for these daily rhythms is the suprachiasmatic nucleus (SCN), otherwise known as "the brain's Timex." The SCN, located above the roof of the mouth in the hypothalamus, is normally synchronized to local time by light signals carried down the optic nerves. Herzog worked directly with mice SCN cells located in vitro, grown in a dish.

"We found that we can rapidly change the phase of the pacemaker. We can shift its timing to a new time zone," said Herzog. "This paper shows for the first time that we can take control of the clock in a dish. We can tell it what time we want it to think it is."

Herzog's findings were recently published in the Journal of Neurophysiology.. His work was funded by the National Institute of Mental Health.

The findings have significant future implications. If brain temperature can be controlled, travellers might never have to deal with jet lag again. Shifting to a new time zone might be accomplished with relative ease.

Herzog says that brain temperature is relatively immune to environmental temperature, but can be affected by bursts of physical activity, fever, nursing, or a dose of aspirin or melatonin, a drug already used to lessen the effects of jet lag.

In his study, Herzog first needed to establish that the SCN would function normally over a wide range of constant temperatures. He tested the cells in a range from 24 C to 370C. With each change in temperature, the SCN cells continued to operate like clockwork.

"Just like a good watch, the SCN needs to be accurate over a range of temperatures. Your wristwatch would be of no use to you if it sped up every time it became warm. Biological clocks work the same way. Amazingly enough, the SCN can oscillate over a wide range of temperatures."

But Herzog was keeping the cells in constant temperature and, he noted, this is not the way your brain really works. Normally, brain temperature fluctuates by about 1.50C every day. Temperature is at its minimum at daybreak, at its maximum during mid-day. This fluctuation exists even in the absence of any environmental cues, such as light and dark. "If you lived in a cave," Herzog notes, "you'd still have a daily rhythm in temperature.

"So we asked the question if that cycling of temperature, if that 1.50C, would have any effect on the pacemaking of the SCN." The answer was a resounding yes.

Herzog simply warmed the isolated SCN during the day and cooled it during the night, reversing the rat's normal daily fluctuation. He found that he could change the time at which the SCN "peaked."

"It shows that the SCN synchronized to the temperature cycle. The temperature cycle entrained it. We fooled the clock by giving it a novel daily schedule, saying 'This isn't the end of the day. This is morning.'"

Herzog's research also sought to disprove the notion put forth in 1998 that shining light on the backs of the knees would be enough to adjust circadian rhythm to a new time zone.

The idea was that by sensing light at the appropriate time people can become synchronized to a new time zone. So Herzog wanted to know: Does the SCN by itself have any light sensitivity?

"We took the SCN out of the animal, put it in a dish, and exposed it to light at night and dark during the day. We asked: does it synchronize to that light-dark schedule? The answer was no." The human biological clock requires the signals from eyes to synchronize to the local light cycle.

Taken together, Herzog's findings indicate that, to avoid jet lag on our next trip to Paris, we should be sure to see the dawn while keeping our brains cool. Future work might lead to a better understanding of what changes brain temperature and why.
-end-
By Teresa Shipley

Washington University in St. Louis

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.