Potential new target for cancer found

July 14, 2007

DURHAM, N.C. - By bypassing a well-known gene implicated in almost one-third of all cancers and instead focusing on the protein activated by the gene, Duke University Medical Center researchers believe they may have found a new target for anti-cancer drugs.

In experiments with human cells and animal models, the researchers studied the gene known as "Ras," which is integral in normal cell growth. When this gene is mutated and becomes overactive, it can lead to the unregulated proliferation of cells that is the hallmark of tumor formation.

The ras gene, known as an oncogene when it is in this mutated state, has been implicated in several different cancers, including those of the pancreas and lungs. To date, efforts at blocking or turning off ras have proven ineffective. Pancreatic cancer has been shown to have the strongest link to the ras oncogene, and it is also one of the hardest cancers to treat, with few patients alive five years after diagnosis, researchers said.

"Since it has been so difficult to target the ras gene itself with drugs, we tried to determine if something that ras activates could be a possible target for a drug or therapy," said Christopher Counter, Ph.D., associate professor of pharmacology and cancer biology and senior member of the research team. "We found a specific target that could be susceptible to drugs, and if these findings are proven true in human trials, we could have a new way of treating ras-dependent cancers."

The results of the Duke experiments were published July 15, 2007, in the journal Genes & Development. Brooke Ancrile, a graduate student in Counter's laboratory, was first author of the paper. The research was supported by the National Institutes of Health.

The researchers discovered that the overactive ras gene was responsible for above-normal secretion of a factor known as interleukin-6 (IL-6). Scientists know a great deal about IL-6 and its functions in the body, but its link to oncogenic ras was unknown.

In addition to finding that the ras oncogene spurred the production of IL-6, they also found that inhibiting IL-6 production reduced the creation of new blood vessels, which are crucial for the development and nourishment of tumors.

"IL-6 was like the gas pedal driving the growth of tumors," Counter said. "No gas, no growth, which is exactly what we saw when we inhibited IL-6 in tumors."

Counter is encouraged that even though these findings are in cell culture and animal models, therapies based on targeting IL-6 in cancers driven by the ras oncogene could be tested in humans in the near future. A biotechnology company has already developed a monoclonal antibody specific to IL-6 which could be used to neutralize IL-6.

A phase II trial is underway testing a monoclonal antibody against IL-6 for patients with multiple myeloma, a cancer that depends on IL-6 but is not known to have a connection to the ras oncogene. If the results of this trial are positive, studies might begin in ras-dependent cancers. Counter's group is actively pursuing the idea that such an antibody may inhibit pancreatic cancer growth in mouse models. If these results are positive, this will open the door for Duke oncologists to organize a clinical trial to test the agent in human cancer patients.

"Secreted proteins promoting the growth of blood vessels in tumors have been successfully neutralized in the past with antibodies," Ancrile said. "We believe that IL-6 is a viable target for drugs that holds promise in the treatment of cancers dependent on the ras oncogene."
-end-
Duke's Kian-Huat Lim was also a member of the research team.

Duke University Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.