Exhausted B cells hamper immune response to HIV

July 14, 2008

WHAT: Recent studies have shown that HIV causes a vigorous and prolonged immune response that eventually leads to the exhaustion of key immune system cells--CD4+ and CD8+ T-cells--that target HIV. These tired cells become less and less able to fight the virus, and the cells' fatigue contributes to the inability of an HIV-infected person's immune system to clear the virus from the body.

Now, researchers at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have shown that a similar type of exhaustion strikes another important brigade of immune system soldiers: the B cells that make virus-fighting proteins called antibodies.

In most HIV-infected individuals not receiving antiretroviral therapy, the virus replicates continuously, causing systemic disturbances that include changes in certain subsets of B cells that circulate in the blood. One of these subsets, known as "tissue-like memory B cells," is abundant in HIV-infected individuals who do not control their viral burden. These particular cells show signs of premature exhaustion and a reduced ability to make the high-quality antibodies needed to fight HIV.

As with studies of exhausted CD4+ and CD8+ T cells, these new findings related to exhausted B cells help illuminate the complex immune system damage caused by HIV, and the challenges to rebuilding or bolstering an HIV-infected person's immune system.

NIAID's HIV vaccine research program aims to increase the understanding of B cells to help inform the development of an effective vaccine, and this study contributes to this effort. The authors note that the design of a therapeutic vaccine designed to slow HIV disease progression will need to overcome or circumvent the challenge posed by the inability of certain exhausted B cells to make high-quality antibodies.
-end-
ARTICLE: S Moir et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. Journal of Experimental Medicine DOI 10.1084/jem.20072683.

WHO: Anthony S. Fauci, M.D., Director, National Institute of Allergy and Infectious Diseases (NIAID) and Chief, NIAID Laboratory of Immunoregulation; and Susan Moir, Ph.D., Staff Scientist, NIAID Laboratory of Immunoregulation, are available to comment on this article.

CONTACT: To schedule interviews, contact the NIAID Communications Office, 301-402-1663, niaidnews@niaid.nih.gov.

NIAID is a component of the National Institutes of Health. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

The National Institutes of Health (NIH)--The Nation's Medical Research Agency--includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at <http://www.niaid.nih.gov>.

NIH/National Institute of Allergy and Infectious Diseases

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.